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INTRODUCTION

The process of evolution is a consequence of the interplay of
mutation, selection, and chance on a population of organisms,
leading to an observable change in its genetic makeup. Since
the time of Darwin, the influence of these factors on the evo-
lution of organisms ranging from bacteria to humans has been
intensively studied, both experimentally and theoretically,
leading to a very large body of literature. Only recently, how-
ever, has attention been turned toward special problems in the
evolution of viruses. Virus evolution is of particular interest
and importance for three reasons. First, we desire to gain an
understanding (usually in the absence of a fossil record) of how
modern viruses have arisen from their earlier forms, both in
recent times and in parallel with the evolution of their hosts.
Second, the evolution of a virus during the course of infection
of a single host, or along a short transmission chain, is of great
importance in creating new populations with properties altered
in important ways, such as evasion of the immune response,
resistance to antiviral therapy, or altered virulence. Third, be-
cause of their high replication rates, simple genomes, large
population sizes, and high mutation rates, viruses make good
models for studying and testing evolutionary theory.

Particular attention has focussed on understanding the evo-
lutionary forces that act on human immunodeficiency virus
(HIV) during the course of infection of a single human host.
HIV displays a remarkable extent of genetic variation concur-
rent with a high speed of evolution: in the most variable region
of the genome (env), individual genomes within a population
from an infected person can vary by as much as 3 to 5% (2, 43,
78); substitutions in env accumulate at a rate of approximately
1% per year (71), 50 million times faster than in the small
subunit of rRNA (61). This variation has important conse-
quences. It allows the virus to evolve to infect different cell
types (9, 20, 30) and to rapidly become resistant to otherwise
highly effective antiviral drugs (10, 47, 50); it may play a role in
evading the immune system (4, 56, 73, 79). Furthermore, its
high mutation rate (estimated to average about 3 3 1025 per
nucleotide site per replication cycle [49]), large population size
(variously estimated from about 107 to 108 productively in-
fected cells), and continuous steady state, in which the large
majority of virions and productively infected cells turns over
every day (25, 77), create a situation which, at least in principle,
is amenable to (and requires) mathematical modeling.

To date, a number of modeling approaches have been ap-

plied to understand the evolution of HIV in vivo. These ap-
proaches use either population genetic (mutation frequency
distribution) or phylogenetic inference using virus sequences
obtained from HIV-infected individuals. In general, they are
based on one of two different theoretical frameworks to the
evolution problem. Deterministic approaches, including quasi-
species theory (15, 26), assume that the population size is very
large, such that the frequency of a given mutation at any given
time is completely predictable if one knows the initial fre-
quency, the mutation rate, and the selection coefficient (i.e.,
the differential growth rate conferred by the different alleles).
At first glance, such approaches would seem justified by the
large number of infected cells at each generation (21); how-
ever, a number of factors, such as variation in the replication
potential and generation times among infected cells, may lead
to an effective population size much smaller than the actual
number of infected cells. Stochastic models, as applied to HIV
(to this point), proceed from the opposite assumption: that the
effective population size is so small (or that selective forces are
so weak) that random drift dominates over selection. The hy-
pothesis of selectively neutral mutations has a long, successful
history in describing the evolution of organisms where popu-
lations are small (and not uniformly distributed) and mutation
rates are very low (36). Their applicability to virus populations
remains to be established. Many of the assumptions that un-
derlie neutral theory are not appropriate for virus populations,
and a number of characteristics of HIV genetic variation in
vivo, such as the uneven ratio of synonymous to nonsynony-
mous changes in different regions of the genome (5, 44, 48),
argue against simple application of neutral theory. However,
inclusion of selection effects in evolutionary analysis (for ex-
ample, the coalescent method) presents a mathematical chal-
lenge that has not yet been fully solved in a practical fashion,
although progress toward this goal has been made recently (42,
55).

As an example of the difference between deterministic and
stochastic models, consider the question of the frequency in a
population of a mutation that is slightly deleterious to virus
replication. In a deterministic system, it can be easily calcu-
lated that the frequency of such a mutation in the population
will come to equilibrium at a point equal to the mutation rate
divided by the selection coefficient (24). In a stochastic system,
the population will usually be completely uniform in one vari-
ant or the other (76), switching rarely but rapidly from one
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form to the other. This theoretical experiment is of great prac-
tical importance in that it describes the appearance of a mu-
tation that can confer resistance to an antiviral drug even
before treatment.

To solve this problem and many others, it is clear that a
more general theoretical framework is needed: one that takes
into account both selection and drift under a set of assump-
tions more appropriate to viruses than is found in theoretical
works published to date. Our aim in this work was to develop,
from first principles, a general theory that includes the effects
of both selection and drift on a population. We use a set of
assumptions appropriate to virus populations, focusing on the
interplay between deterministic and stochastic behavior in the
context of virologically realistic experiments. We apply these to
the simplest possible model: mutation at a single site with only
two alleles, replicating in a steady-state system (that is, a con-
stant number of infected cells) under the influence of constant
selective pressure in a single isolated population. Because we
are dealing with a single locus, we do not consider recombina-
tion explicitly; because we are dealing with haploid popula-
tions, we do not have to consider allelic dominance. It should
be noted that although we do not consider recombination
explicitly, the presence of strong recombination must be, in
fact, implied for the one-locus approximation to be quantita-
tively correct. Also, nonconserved loci must be spaced suffi-
ciently far apart in the genome, depending on the recombina-
tion rate. Even in the absence of recombination, the one-locus
approximation is a useful starting point for understanding in-
teractions between selection and stochastic factors at a quali-
tative level. We present a complete model that considers the
full range of possible values for population size, mutation rate,
and selection effects. Despite its simplicity, the model is sur-
prisingly rich in its descriptive power. At the extremes, the
results of this model correspond to the standard results of
deterministic or neutral theory; however, we have found that
there is a large range of values for the key parameters in which
the system behaves in an intermediate fashion: under some
conditions its evolution is dominated by stochastic factors,
whereas at other times it behaves in a nearly deterministic
fashion. We refer to this range of parameter values as the
“selection-drift” regime and describe its properties in detail.

This work is divided into two major parts. In the first, we
present all the principal results in qualitative terms, using lan-
guage appropriate for a reader trained in biology and with a
moderate level of mathematical sophistication. This part is
accompanied by a number of illustrative examples obtained by
computer simulation. Although keyed to the mathematical for-
malism of the second part, it is designed to be read indepen-
dently and to provide the reader with an understanding of the
principal results and their biological significance, particularly
in the context of virus populations. The second part is a formal
mathematical derivation of the principal results of the model.
These results are listed at the beginning of each section and
derived in the following subsections. Although some of the
derivation presented is not novel, in that it parallels classic
work of a number of population biologists (18, 19, 23, 24, 31,
37, 81, 82), its formal application specifically to virus systems is,
to the best of our knowledge, a new approach, and we present it
in full for this reason, as well as to provide a thorough and

self-contained review. Although some of our mathematical meth-
ods differ from the classic methods, the final results are identical.

The presentation in both parts of this work proceeds in
parallel. We first develop the basic evolution equation, which
describes, at least in a statistical sense, the change in frequency
of a mutant allele as a function of time and the key parameters:
mutation rate, selection coefficient, and population size. We
then present the predicted results, for all three regimes, of a set
of virological experiments: accumulation and reversion of del-
eterious mutations, competition between mutant and wild-type
viruses, gene fixation, mutation frequencies at the steady state,
divergence of two populations split from one population, and
genetic turnover within a single population. Next, we discuss
sampling statistics and the application of this theory to some
specific real-world experimental issues of virus and organismal
evolution. Finally, we discuss the application and extension of
this theoretical framework to other problems, including mul-
tilocus evolution and phylogenetic analysis.

QUALITATIVE DISCUSSION AND COMPUTER
SIMULATIONS

Description of the Model and the Evolution Equation

In this section, we introduce the population model and ex-
plain how to approach the problem of evolution when random
factors enter the picture. First we describe a one-locus, two-
allele population model based on the virus replication cycle
and discuss briefly the main factors of evolution included in the
model. This is followed by a discussion of the biological mean-
ing of the evolution equation. Finally, the boundary conditions
for the evolution equation describing the properties of a
weakly polymorphic population are described.

Virus population model. First, we choose a basic model of
virus evolution. For the purposes of simplicity, we consider the
evolution of one nucleotide position at a time, and we assume
that each nucleotide has a choice between only two alleles.
(Such a model applies directly to multiple loci if the evolving
loci are sufficiently distant and the recombination rate is suf-
ficiently high. Evolution at closely situated loci or in the ab-
sence of efficient recombination is not independent [see “Many
loci and other aspects” below].) Conventionally, we denote the
better-fit allele as wild type and the less-fit allele as mutant. A
deleterious mutation event (from wild type to mutant) will be
referred to as forward mutation, and an advantageous muta-
tion event will be referred to as reverse mutation. Each sepa-
rate nucleotide will be characterized by two parameters, both
of which are assumed to be much less than unity: the mutation
cost (or selection coefficient), s, which is the relative difference
in fitness between the two alleles, and the mutation rate per
base per replication cycle, m. We assume that mutations at
different nucleotides have a weak additive effect on virus fit-
ness. In doing so, we neglect epistasis (coselection) arising due
to biological interaction between nucleotides at both the nu-
cleotide and protein levels. We also ignore linkage disequilib-
rium between loci due to random drift, so that different
nucleotides evolve independently (see the Introduction). The
mutation rate is set, in our work, to be the same in the forward
and reverse directions. For example, for HIV in infected cells
the mutation rate per base is in the range of 5 3 1026 to 5 3
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1025, depending on the type of substitution (49, 68). The
selection coefficient will vary over a wide range according to
the specific base and to the specific conditions of replication,
but it is assumed to be constant over the period of observation;
in other words, there is no selection for diversity.

The basic model of virus replication is illustrated in Fig. 1.
Consider the dynamics of a cell population infected by two
genetic variants of a virus: a fraction (f) of cells is infected by
the mutant virus, and the remaining cells (1 2 f) are infected
by the wild type. The number of mutant-infected cells may
change with time, i.e., with each new generation of cells. The
total cell count is assumed to be constant. During a generation
step, each cell produces a fixed (large) number of virions and
then dies and is replaced by an uninfected cell. The number of
virions produced and capable of infecting new cells differs, by
a factor of 1 2 s, between cells infected with different variants,
creating selection for the better-fit (more prolific) variant.
Since the total number of infected cells is fixed and the number
of virions produced per cell is large, only a small fraction of the

virions infect the next generation of cells. On infecting a cell,
each virion has a small chance of mutating into the opposite
genetic variant, given by the mutation rate introduced above.
All the virions produced by a cell afterwards represent the
same genetic variant. Thus, intracellular interference between
variants does not occur. (This lack of intracellular competition
is a reasonable assumption for retroviruses or when the pro-
portion of infected cells in a tissue is much lower than 100%.
It may vary in other virus models, when the multiplicity of
infection is high.)

Some details of the model, such as fixed burst sizes and the
point of the replication cycle at which mutation occurs, are of
no consequence when long timescales are considered. Overlap
in time between generations of infected cells was neglected but
causes a factor of 2 increase in the rate of random drift (52). By
contrast, such assumptions as two variants per base and the
absence of both coselection and selection for diversity are
essential. The model includes a minimal set of three factors of
genetic evolution: random drift due to sampling of genomes,
mutation, and selection. Let us characterize briefly the effect of
each of these factors on the composition of the population as
it changes with time.

The model assumes that the virions infecting each new gen-
eration of cells are chosen randomly from the virions produced
by the mutant and wild-type subpopulations. As a result of this
random sampling of genomes, the mutant frequency experi-
ences random drift in time (18, 80), as shown in Fig. 1a. In the
absence of mutation and selection, any population composed
originally of a mixture of alleles eventually becomes uniform in
either genotype (i.e., the allele is fixed), with the probabilities
depending on the initial composition.

Selection enters our model through the difference in the
number of infectious progeny produced by cells infected with
different genetic variants. Selection alone drives the system
into a state consisting entirely of the better-fit variant.

Mutations, in contrast to random drift and selection, favor
inhomogeneity. If the other two factors are absent, mutations
push the system toward the equilibrium composition at which
the total numbers of forward and reverse mutations per gen-
eration are in balance. For equal forward and reverse mutation
rates assumed here, equilibrium occurs at 50% of each allele.

If all three factors are at work and there are no external
perturbations, the population will eventually reach a dynamic
steady state in which mutation, on average, is in balance with
selection and/or random drift. In the steady state, the statistical
properties of the population no longer vary with time; i.e., even
though the genetic composition may fluctuate strongly with
time, all the mean values, standard deviations, etc., remain
constant. The whole model with the three factors of evolution
is illustrated in Fig. 1b.

Stochastic equation of evolution. Different meanings can be
assigned to the word “evolution.” For the task at hand, evolu-
tion of the population is characterized by the dependence of
the frequency of cells infected with mutant virus on time. In
deterministic dynamics, which applies only in very large pop-
ulations of infected cells, if one knows the initial mutant fre-
quency and has the appropriate equations, one can, in princi-
ple, predict the mutant frequency at later times with arbitrary
precision. (In practise, the equations are never known exactly,
since there are many different factors in play, but this is a separate

FIG. 1. (a) Drift of genetic composition due to random sampling of
infecting virions. Circles denote infected cells, and small diamonds
show free virus particles. Black and white denote virus genetic variants.
(b) Full virus population model including random drift, selection, and
mutation. Two consecutive generations of infected cells are shown.
Lines radiating from a cell denote virions, some of which, as shown by
arrows, infect new cells. Mutant cells yield fewer progeny per cell. A
small fraction of infecting virions, m1 and m2, mutate to the other
variant.
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issue [68].) By contrast, in the presence of random factors, the
time dependence of the mutant fraction cannot be predicted even
in principle. Even if one knows its precise initial value, the error
with which one can predict its value later grows with time. If
random factors are strong, the error in the mutant frequency
and its value become eventually comparable. Evolution of the
mutant frequency, in other words, is a random process.

Randomness of mutations does not mean, however, that the
evolution of a population is totally arbitrary. On the contrary,
useful predictions can be made about its statistical properties
even if its specific state cannot be predicted. Instead of time
dependence of the mutant frequency, one has to consider
the time-dependent probability density [r(f)], defined as the
chance that a given population has a mutant frequency near a
particular value. The probability density, which can be intro-
duced if both subpopulations (mutant and wild type) are large,
is closely related to a histogram derived by plotting the number
of times the mutant frequency of a population is observed to lie
within a certain range of values. When both the number of
similar experiments and the number of histogram bars are very
large, the histogram becomes, in the limit, a smooth function,
which is the probability density. (The histogram and the prob-
ability density differ by a constant factor: the total area under
the probability-density curve [integral] is, by definition, the
total probability of having any value of the mutant frequency

and is, of course, equal to 1.) The density function contains
information about the most relevant statistical parameters (av-
erage values and standard deviations) which can be compared
with experiment (see “Experiments on evolution and observ-
able parameters” below). In particular, the characteristic width
of the probability density peak indicates the error within which
the mutant frequency can be predicted.

The stochastic evolution equation (equations 1 and 2) (Fig.
2a) expresses the rate of change in the probability density with
time in terms of its form at the present moment. Using such an
equation and knowing the initial probability density, one can
predict its form, in principle, at any time in the future, similarly
to how one would predict the mutant frequency itself for a
deterministic process. The difference between the two cases is
that the time-dependent variable is now a function rather than
a number. We derive the evolution equation directly for the
population model introduced in the previous subsection, in the
beginning of mathematical part of our work (see “Mathemat-
ical results and derivations” below). The rest of the mathemat-
ical part is devoted to solving the equation for different impor-
tant cases. Here we only show how the equation looks when the
probability density is localized in a small region near some
value of the mutant frequency and comment on its meaning
from a more qualitative perspective.

The right hand-side of the equation shown in Fig. 2a is a

FIG. 2. Illustration of the stochastic evolution equation. (a) The equation shown is derived from equations 1 and 2 in the particular case where
the probability density, r(f,t), is a narrow peak. Its right-hand side is a composite of three terms describing the effects of random drift, selection,
and mutation on the change in the probability density with time. (b to d) The lower panels show the local changes in r(f,t), corresponding to each
part of the right-hand side of equation in panel a, and the upper panels show the resulting effects: spread (b) and shift (c and d) of the peak. Solid
and dashed lines show the peak at two adjacent moments in time.
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sum of three terms, which together describe how the shape
of the probability density function, r, changes over a short
time interval, dt. The first term describes random drift, the
second describes selection, and the third describes muta-
tion. To clarify the roles of the three terms in describing
evolution, we consider each of them separately, by setting
the other two terms equal to 0 (Fig. 2b to d). As a conve-
nient example, we examine a probability density localized in
a small region near some value of the mutant frequency
(fmax). In this example, the second term, by itself, means that
the probability density increases with time on the left side of
the peak and decreases on the right side of the peak. As a
result, the probability density peak, whose shape stays con-
stant, shifts to lower mutant frequencies, as it should in the
presence of selection (Fig. 2c). The third term in the equa-
tion, by itself, causes a shift of the peak as well, but the
direction of the shift is toward 50% composition, which is
the expected effect of mutation when the forward and re-
verse mutation rates are, as assumed, equal (Fig. 2d). The
effect of the first term in the equation is of a different kind.
Due to this term, the probability density decreases in the
interval between the inflection points A and B (Fig. 2b) and
increases everywhere outside of the interval. As a result, the
probability density spreads outward. This is random drift:
the error within which one can predict the value of mutant
frequency increases with time. A more general form of the
stochastic equation when the probability density, r(f), is
spread over a broad interval of f, is given in equations 1 and
2.

In the equation in Fig. 2a, a physicist will recognize a par-
ticular case of the Fokker-Planck equation and a mathemati-
cian will recognize a case of the forward Kolmogorov equation
(41). It was introduced into the field of population genetics by
Wright (81) and then intensively used to study evolution in the
presence of different factors (31–33, 37). As it turns out, the
equation is much more general than the virus model we used
for its derivation in the mathematical section of this review. It
describes a broad range of population models, from a bacterial
culture to a randomly mating population without allelic domi-
nance (35). Originally, the approach of the Fokker-Planck
equation was introduced into population genetics from a phe-
nomenological perspective, based on analogy to gas kinetics
(18). Later, the validity of this approach was confirmed for
different population models (52, 75). Examples of essential
factors which are not included in the equation but which may
or may not be important, depending on the experimental sys-
tem, are epistasis (biological interaction) and linkage between
multiple loci, time variation of the selection coefficient and the
population size, and allelic dominance in a diploid population
(33).

A formal analogy for the system described by the evolution
equation is a gas consisting of particles mixed with air and
confined between two parallel walls (Fig. 3a). A value of the
mutant frequency is analogous to a location between the walls,
and the probability density is now the local gas density. The
first term (Fig. 2a) describes the diffusion of the gas particles in
the air, and the second and third terms combined describe the
effect of directed force (an electric field, for example) acting on
the gas particles in the presence of friction of the gas against
the air. Another useful analogy is gel electrophoresis. The

electrical force acting on polymer molecules and the friction
against the gel matrix together create directed motion, which
segregates the molecules into bands. Molecular diffusion leads
to increasing bandwidths. Although the physics of the gel or
gas system has nothing to do with viruses or evolution, the
formal mathematical analogy between the two systems, as we
shall see below, turns out to be very useful.

Boundary conditions: properties of almost monomorphic
populations. In the real world, the mutant frequency cannot be
less than 0 or greater than 1, yet the master equation has no
such restriction. Thus, the stochastic equation in Fig. 2a (and
equations 1 and 2) is incomplete without describing what hap-
pens near ends of the allowed interval for the mutant frequen-
cies, 0 and 1. The analysis shown in Fig. 2 is for the case where
there is a large number of minority allele copies (that is, f is not
near 0 or 1) and treats the mutant frequency (f) as a continuous
variable. In many important cases, one also needs to describe
the evolution of a population with only a few copies of the
minority variant. The boundary conditions where f is near 0
and 1 have to be derived independently from the virus popu-
lation model described in Subsection A. The derivation given
in the mathematical section of this review shows that the con-
ditions differ depending on the interval of population size, as
follows.

The boundary conditions can be conveniently expressed in
terms of the probability density flux (q), which is exactly anal-
ogous to the flux of gas particles through unit area per unit
time (Fig. 3). In very large virus populations (Fig. 3b), the
boundary conditions state that the flux must vanish at the
“walls” corresponding to two monomorphic states, i.e., 100%
mutant or 100% wild type (equation 3). In small populations
(Fig. 3c), the flux is not zero (equations 5 and 6). This is
because the probability of finding the virus population in a
completely monomorphic state is finite and can increase or
decrease in time. In the gas analogy, in the first case (Fig. 3b)
gas molecules bounce off the hot walls and in the second case
(Fig. 3c) the walls are cold and gas forms a condensate which
can decrease or increase with time. Figuratively speaking, the
probability density, just like the gas condensing in or evapo-
rating from the liquid on a wall, can “condense” in or “evap-
orate” from a monomorphic state.

The real, biological interpretation of the different sets of
boundary conditions is as follows. In very large virus populations
(which, as we shall see, roughly correspond to almost determin-
istic evolution), a purely monomorphic state is unlikely: mutations
destroy it very quickly. In a small population, mutations are rare
and the monomorphic state can occur with a finite probability.
This argument also shows that mutations affect virus evolution in
a different way depending on the number of infected cells. In
a large population, mutations may be important even in a very
polymorphic state (e.g., if selection is small). In small popula-
tions, the role of mutations is to create a copy of the new allele
in an otherwise monomorphic population; once a copy is cre-
ated, mutations can be neglected until the population becomes
monomorphic again. Typically, as we discuss below in the sec-
tion on steady state, a new allele is lost due to random drift and
repeated introduction of mutations will be needed to restore
diversity.

156 ROUZINE ET AL. MICROBIOL. MOL. BIOL. REV.



Experiments on Evolution and Observable Parameters

In this section, we describe a few gedanken experiments on
genetic evolution important for virological applications and
introduce quantitative parameters suitable for experimental
comparison.

To make use of the evolution equation with boundary con-
ditions (see “Description of the model and the evolution equa-
tion” above), one needs to know the state of the system or its
statistics at the initial moment of time. The initial condition
depends on a particular experimental or natural setup. Viro-
logical experiments, relevant for both in vivo and in vitro sit-
uations, are as follows.

(i) Accumulation of deleterious mutants (initial condition: a
pure wild-type population, i.e., f 5 0).

(ii) Reversion of a deleterious mutation (initial condition: a
pure mutant population, i.e., f 5 1).

(iii) Growth competition (initial composition: a 50%-50%
population [f 5 0.5] or any other strongly polymorphic mix-
ture).

(iv) Gene fixation (this experiment, which has received a lot
of attention in population biology [19, 24, 34, 38, 80] and which

is very useful for understanding other stochastic experiments,
is defined only in small populations in which the total mutation
rate per population, mN, is much less than 1; suppose that a
single advantageous allele is introduced into an otherwise
monomorphic population [f 5 1/N]—the allele will have one of
two fates: either it will be lost due to random drift [Fig. 1a] or
it will spread to the entire population, i.e., become “fixed”; the
questions are: what is the fixation probability, and, if the allele
is fixed and does not become extinct, how much time will it
take, counting from the moment it appeared? One can also ask
a more general question: what is the probability of having a
new allele to grow into a subpopulation of a given size before
it becomes extinct?).

(v) Steady state. Whatever the initial condition, after a suf-
ficient time, the system passes to the stochastic steady state, in
which the probability density no longer depends on time; we
consider this relatively simple case separately.

(vi) Genetic divergence. One splits a steady-state population
into two isolated parts. Initially, both populations have a ran-
dom but identical genetic composition, from which they inde-
pendently diverge. As time goes on, their respective random

FIG. 3. Stochastic evolution equation (equations 1 and 2) and its boundary conditions viewed through the formal analogy between the
probability density and the local gas density. The walls at f 5 0,1 correspond to the two monomorphic states. (a) Gas particles subject to diffusion
and a directed force when far from the walls. (b) Boundary conditions at large population sizes: gas particles bounce off the walls; the total flux
at a wall is 0 (equation 2). (c) Small population sizes: gas particles can condense on or evaporate from a wall; the total flux at a wall does not need
to be 0 (equations 5 and 6).
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compositions correlate less and less. The question is, what is
the characteristic time at which the loss of correlation occurs?

(vii) Genetic turnover? This experiment studies the average
timescale associated with random fluctuations of the mutant
frequency in the steady state.

The probability density (r) of the mutant frequency pre-
dicted by the stochastic equation is the main observable pa-
rameter. Unfortunately, to measure it directly, one would have
to generate a histogram of mutant frequencies for a very large
ensemble of populations. More amenable for experimental
testing are the average (expectation) values (equation 36) and
the standard deviations or variances (equation 37) of different
stochastic parameters, which require a smaller number of pop-
ulations to measure. Below we introduce some useful param-
eters whose statistics can be measured in the different experi-
ments we outlined above. At the same time, their predicted
statistics can be expressed via the probability density, as shown in
the mathematical section of this review. In what follows, we as-
sume that each parameter, for each given population, is measured
with a high precision from a sufficiently large sample of se-
quences. The sampling effects will be discussed separately below.

The first parameter is the mutant frequency itself (f), which
is self-explanatory. Its value can be compared directly with the
experimental value, provided that the wild-type (best-fit) nu-
cleotide is known.

The second is the intrapopulation genetic distance (T), de-
fined as the proportion of sequence pairs (randomly sampled
from the virus population) which differ at the base of interest.
Although there are other ways to measure intrapopulation
variability, we will use this definition, known in population
biology as Nei’s nucleotide diversity. It is equivalent to the
standard definition of the genetic distance in virology as the
average number of pairwise differences among randomly se-
lected genomes, except that it applies to a single base rather
than to a long genomic segment. By definition, T is calculated
as 2f(1 2 f), and varies between 0 (at f 5 0 or 1) and 0.5 (at f 5
0.5). The genetic distance is usually a more convenient mea-
sure of population diversity than the mutant frequency itself
since it does not require knowledge of the wild type sequence.

The third is the interpopulation genetic distance (T12),
which is defined in the same way as the intrapopulation genetic
distance, except that the two sequences of each pair are sam-
pled from two different populations (equation 40). The inter-
population distance is 0 when the two virus populations consist
uniformly of the same genetic variant and 1 (100%) when the
two virus populations are composed entirely of opposite genetic
variants. The interpopulation distance, as one can show, cannot
be smaller than the average of the two intrapopulation distances.
Therefore, it is sometimes more convenient to consider instead
the relative genetic distance between two populations (D), de-
fined as the difference between the interpopulation distance and
the average of the two intrapopulation distances [T12 2 (T1 1
T2)/2]. This parameter (equation 41) varies between 0 (two pop-
ulations have an identical genetic composition) and 1 (one pop-
ulation is pure mutant, another is pure wild type). There are
alternative definitions of the relative distance (54). We find this
definition more clear intuitively; also, its statistical moments
(average, variance) are relatively easy to calculate.

All the previous parameters can be measured at one time
point, both for dynamic experiments (the first three experi-

ments in the beginning) and in the steady state. Since all of
them are, in general, stochastic, an average and standard de-
viation has to be calculated for each. The next parameter is
more complex: it requires measurement at two different times.
We define it on average and for a steady state population only.

The fourth parameter, the time correlation function of mu-
tant frequency [K(t)], describes how quickly the system “for-
gets” the preceding random fluctuation of the mutant fre-
quency (equation 45). The time correlation function usually
has a maximum when the time difference is 0 and vanishes at
large time differences. The characteristic time at which it de-
cays by 50% (or, say, by a factor of e 5 2.78. . . ) from its
maximum gives the timescale of random fluctuations. The form
of this decay (e.g., exponential or negative power) may be a
good fingerprint of a virus population model or, within a given
model, of a particular population size.

In the mathematical section of this review, we calculate
these parameters for different gedanken experiments and dif-
ferent intervals of population size. In this section of the review,
we discuss these results qualitatively and illustrate them, when
possible, with Monte Carlo simulations.

Steady State

In this section, we discuss properties of the steady-state,
stochastic population in different intervals of the population
size.

Neutral case: s ,,,, m. Selection is of little significance when
the selection coefficient is much less than the mutation rate.
This case is probably of little practical significance for RNA
viruses, with their tightly organized genomes. However, the
transition between stochastic and deterministic behavior is eas-
ier to analyze when the selection factor can be neglected.
Hence we start our discussion here.

The main fact of stochastic theory is that fluctuations of
mutant frequency between statistically identical populations
are large if populations are small (stochastic behavior) and
small if populations are large (nearly deterministic behavior).
In the language of the probability density (equation 52), the
density is spread over a broad interval of f in small populations
and is a narrow peak at very large population sizes. Transition
between the two limits is controlled mostly by a single param-
eter mN, the product of the population size and the mutation
rate. The composite parameter mN, which features extensively
in population genetics (usually as Q 5 2Nm), gives the total
mutation rate for the entire population. For most RNA vi-
ruses, mN equals 1 when the number of infected cells is on the
order of 105 (i.e., less than the number in a small culture dish).

As the mutation rate per population increases, the proba-
bility density gradually changes its shape, as illustrated in Fig.
4 (80). This results from competition between random drift,
which drives the system to one of uniform states, and muta-
tions, which diversify the system. At values of mN much smaller
than 1 (an interval we accordingly call the drift regime in Table
1), random drift wins and the usual population is only weakly
polymorphic. The probability density is, accordingly, U shaped,
with a minimum at 50% composition. At the smallest values of
mN (the condition is given in equation 5), the system is most
likely to be in either of the purely monomorphic states, without
a single opposite allele present (see “Description of the model
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and the evolution equations” above, where the the boundary
conditions are described). The total probability of any poly-
morphic state will be much less than 1 and on the order of mN.
This estimate gives the frequency of segregating sites in a
genome segment.

Let us move toward larger populations. As we increase the
parameter mN, the U shape of the probability density flattens
out (Fig. 4). The minimum at 50% composition becomes a
maximum when mN is equal to 1/2. The probability density
shrinks and becomes narrow as the population increases and
mN becomes much larger than 1. This means that the mutant
frequency is very close to the deterministic value of 1/2, owing
to the balance between forward and reverse mutations. In
Table 1, this limit of population sizes is denoted the mutation
regime.

Case with selection: m ,,,, s ,,,, 1. The situation when the
selection coefficient is less than 1 but still much larger than the
mutation rate is more relevant for RNA viruses and more
interesting theoretically. As in the neutral limit, the larger the
population size the smaller the fluctuations.

The selection factor can be neglected only if a population is
very small, much smaller than the inverse selection coefficient
(Ns ,, 1), a case that has the same properties as the above-
described drift regime. At larger population sizes, selection is
crucial and causes the probability density (equations 48 or 49
to 51) to be asymmetric in favor of a predominantly wild-type
population.

In the limit of very large populations, when mN is much
larger than 1 (termed the selection regime in Table 1), the
probability density is narrow and localized near its determin-
istic value (equation 57). This value is given by the ratio of the
mutation to the selection rate (m/s), which we assumed to be
small. At this value, mutations and selection against emerging
mutants reach balance.

A result not sufficiently emphasized in the population biol-
ogy literature is the existence of a wide interval in population
size between the inverse mutation rate and the selection coef-
ficient, which we term the selection-drift regime, in which all
three factors of evolution are critical. Specifically, mutations
produce diversity, selection restricts mutants to a low level, and
random drift causes strong fluctuations between populations.
The structure of the probability density in this regime is shown
schematically in Fig. 5. It consists of three components. The
large peak (delta function) situated at exactly zero mutant
frequency means that a population is, most probably, purely
wild type. The weak continuous exponential tail which decays
at mutant frequencies on the order of 1/Ns ,, 1 (80) means
that the chance of a population being polymorphic is low and
that if a population happens to be polymorphic, the proportion
of mutants is small and quite random. A small peak at f 5 1
becomes important only close to the lower border of the in-
terval, when N is on the order of 1/s. The probability of finding
any mutants (which is given by the total area under this curve)
is low and proportional to mN (equations 49 to 51).

The selection-drift regime has rather interesting, even con-
troversial properties. On the one hand, the shape of the prob-

FIG. 4. The steady-state probability density in the neutral case. The
curves show rss(f) when s ,, m at different population numbers, N.
Numbers on the curves show the corresponding values of mN.

TABLE 1. Classification of regimes of genetic evolution

Regime

Neutral limit (s # m) In the presence of selection (s .. m)

Population
size Behavior Factors in

steady state
Factors in

diverse state
Population

size
Behavior in
steady state

Factors in
steady state

Factors in
diverse state

Drift N ,, 1/m Stochastic Drift, mutations Drift N ,, 1/s Stochastic Drift, mutations Drift
Selection-drift 1/s ,, N ,, 1/m Stochastic Drift, mutations, selection Selection
Selection N ,, 1/m Deterministic Mutations, selection Selection
Mutation N .. 1/m Deterministic Mutations Mutations

FIG. 5. Schematic plot of the steady-state probability density in the
selection-drift regime. The curve shows rss(f) for the case when 1/s ,,
N ,, 1/m. Note the very narrow peaks at r 5 0 and 1, together with the
tail extending from r 5 0.
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ability density suggests a very stochastic behavior. On the other
hand, the average mutant frequency and the average genetic
distance happen to coincide, over most of the regime, with
their deterministic values, as if the population were much
larger. Figure 6 shows the average values and the relative
standard deviations for both parameters at all the population
sizes. As expected, in the selection drift regime the relative

standard deviations for both the mutant frequency and the
genetic distance are much larger than unity (Fig. 6b). At the
same time, the average values (in equation 59) are the same as
in the selection regime (Fig. 6a). Notably, the fluctuations of
the parameters are much stronger than could be expected from
the Poisson statistics. This is a result of clonal amplification: if
a single mutant appears in otherwise wild-type population, it

FIG. 6. Dependence of the observable parameters at steady state on the population number. N varies over the three main intervals. (a) Average
mutation frequency, f# and genetic distance, T# . (b) Relative standard deviations of the same two parameters. (c) Fragments of representative Monte
Carlo simulations in the respective intervals of N (see Fig. 10 to 12 for details).
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grows into a clone. In the sections on stochastic dynamics (see
below), we will further clarify the structure of the steady state
by presenting a Monte Carlo simulation of a stochastic dy-
namic evolution in a single population. Examples of the results
of such simulations for each regime are shown in Fig. 6c.

Deterministic Dynamics and Its Boundaries

As we have shown above (see “Experiments on evolution
and observable parameters”), the steady-state mutant fre-
quency approaches its deterministic value when mN is much
larger than 1. The purpose of this section, small but with a
large mathematical counterpart, is to gain insight into the
transition between stochasticity and determinism in the more
complex case, in which parameters of the system depend on
time.

Deterministic dynamics. Deterministic and stochastic theo-
ries operate with different dynamic variables. The former con-
siders the time dependence of the frequency of mutants, and
the latter uses a more complex object, the time-dependent
probability density of the mutant frequency. It is important to
ensure that the two approaches converge to the same result in
the limit of infinite population, when they are expected to
describe deterministic evolution, albeit in a different way. For
this purpose, in the mathematical section of this review we
solve the dynamic stochastic equation (equation 1) for the case
of large populations. The resulting probability density, as ex-
pected, is a very narrow peak located at the time-dependent
mutant frequency (Fig. 7b), which satisfies the deterministic
equation of evolution (equations 60 and 61).

The first term in the right-hand side of the deterministic
equation (Fig. 7a) (equation 61) describes selection for the
wild type, causing depletion of mutants. When one of two

subpopulations (f or 1 2 f) is very small, the first term becomes
small, since if there is no diversity, there is no selection. The
second term, describing mutations, does not vanish in a uni-
form population. Instead, the term vanishes at 50% composi-
tion when the effects of forward and reverse mutations cancel
each other. Mutations drive the system toward 50% composi-
tion. The same evolution equation can be obtained directly
from the deterministic first principles (equations 63 and 64).

The deterministic equation in Fig. 7a allows one to predict
the genetic composition as a function of time for any initial
condition set in an experiment (equation 62). Corresponding
plots for the three cases matching the conditions of the accu-
mulation, growth competition, and reversion experiments de-
scribed above (see “Experiments on evolution and observable
parameters”) are shown in Fig. 8. In all cases, after a charac-
teristic time proportional to the inverse selection coefficient
(1/s), the population approaches a steady state in which the
mutant frequency saturates at a small value, the mutation rate
over the selection coefficient (m/s) (see “Steady state” above).
Reversion is somewhat delayed compared to that in the two
other experiments since the system first has to diversify slowly
due to mutations and then still has to cross the entire interval
of the mutant frequencies. Note that in both the accumulation
and reversion experiments, the initial slope of the time depen-
dence of the mutant frequency is shallow and is determined by
the mutation rate (Fig. 8). Selection becomes important and
causes the plots to curve after a growing subpopulation be-
comes sufficiently large.

Boundaries of deterministic approximation. Random drift,
always present even in very large populations, causes the fre-
quency of mutants to fluctuate around its deterministic value.
As the population size decreases, the magnitude of fluctuations
becomes comparable to the average frequency of the minority

FIG. 7. Probability density of the mutant frequency in the deter-
ministic limit. r(f) is represented by the mathematical expression for
mN .. 1 (a) and a schematic plot (b).

FIG. 8. Schematic dependence of the mutant frequency, f, on time
in the deterministic limit. The three curves correspond to three differ-
ent initial values of f(0): accumulation of mutations [f(0) 5 0], growth
competition [f(0) 5 1/2], and reversion of a mutation [f(0) 5 1]. The
value of the ratio m/s used in the figure is unrealistically high for viruses
and is used for clarity of plot only. Dashed lines show initial slopes.
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allele (either mutant or wild type), and the deterministic de-
scription breaks down. The corresponding condition on the
population size varies significantly depending on the initial
conditions of the experiment (equation 65). When the popu-
lation starts from a monomorphic state (reversion or accumu-
lation), the deterministic criterion is met when mN is much
larger than unity. A population that is strongly diverse to start
with, as in the growth competition experiment, is already de-
terministic at a much smaller population size in the selection-
drift regime. (The criterion for diversity is that the mutant
frequency must be higher than its characteristic “tail” at steady
state [Fig. 5] ). The reason for this difference is that a small
polymorphism is influenced by rare and random mutation
events while a strongly polymorphic population is controlled by
selection alone.

Stochastic Dynamics: the Drift Regime

At the smallest population sizes, smaller than the inverse
selection coefficient, as we found out when considering the
steady state, selection can be neglected altogether. In this
section, we consider the nonequilibrium dynamics in this re-
gime. The problems of interest are those listed above (see
“Experiments on evolution and observable parameters”): the
decay of a strongly polymorphic state, gene fixation, transition
from a monomorphic to the steady state, divergence of popu-
lations which have been separated, and the rate of genetic
turnover in the steady state.

Decay of the polymorphic state and gene fixation. We start
our discussion from the population that is initially poly-
morphic, somewhere in the middle between 0 and 100%. As
already discussed (see “Description of the model and the
evolution equation”), mutations are not important in a poly-
morphic population, since they occur in the population with a
frequency, mN, much less than 1 per generation. Therefore,
random drift remains the only factor causing variation of the
mutant frequency in time. As time passes, the mutant fre-
quency drifts until the population accidentally ends up in either
monomorphic state (cf. Fig. 1a). A representative random pro-
cess is illustrated by computer simulation in Fig. 9b. The av-
erage time (the number of generations) it takes for a popula-
tion to become monomorphic (i.e., for either variant to be
fixed) is on the order of the population size (equations 81 and
82) (32, 80). The fixation time is quite random: its represen-
tative fluctuations are on the order of its average value. The
same process can be understood in another way, from the time
evolution of probability density. Figure 9a shows how the prob-
ability density, initially a narrow peak located, e.g., at 50%
composition, gradually spreads out to the entire interval and
then decays.

The fact that, in a time not exceeding a few multiples of the
population size, the population becomes uniform has general
phylogenetic consequences. Let us divide arbitrarily a popula-
tion into two groups of equal size and mark each group, say, by
a different color. Then we divide each group (color) into two
subgroups and mark them by two different shades. Then we
divide each shade into two hues, and so on. If we continue the
process of subdivision long enough, all individuals in the pop-
ulation will eventually have different tags. Consider now a
group consisting of two subgroups. According to the above

result, in a time not exceeding a few multiples of the group size,
one of the two subgroups vanishes. Likewise, the surviving
subgroup contains two smaller subgroups, one of which also
becomes extinct in a time not exceeding a few multiples of the
subgroup size, and so on. Therefore, in a time on the order of
the total population size, the entire population will have the
same tag, i.e., will comprise descendants from a single virus or
organism. In other words, any two organisms in a population in
the drift regime have a common ancestor at a past number of
generations on the order of the population size. Phylogenetic
methods of analyzing branching processes confirm this result,
which is the basis of the coalescent method of estimating pop-
ulation size (39, 40, 65).

Related to the decay of polymorphism described above is
gene fixation. Suppose that a single new allele is introduced
into a monomorphic population at an initial moment. Eventu-
ally, after a number of replication steps, the allele will either
disappear due to random drift (which is the most likely out-
come) or spread to the entire population, i.e., become fixed.
The questions are as follows. (i) What is the probability that

FIG. 9. Decay of polymorphism in the drift regime. A growth com-
petition experiment for the initial condition f0 5 0.5 and Ns ,, 1 is
shown. (a) Change in the probability density in time (equations 81 and
82). (b) The two stochastic dependences f(t) were obtained by random
runs of a Monte Carlo simulation program written for the virus pop-
ulation model described in the text. Parameters are shown in the
figure.
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the allele will get fixed? (ii) Given that the allele is lucky
enough to become fixed, what is the average fixation time? As
we show in the mathematical section of this review (equation
84 with f 5 1), the fixation probability is the inverse of the
population size (1/N) (34) and the fixation time is on the same
order as the polymorphism decay time, i.e., on the order of the
population size.

One can also ask more general questions. What is the prob-
ability that a single mutant genome will ever grow into a sub-
population with a given size? What is the average time spent
on this growth? The results are analogous to that for full
fixation, except that the subpopulation size substitutes for the
total population size (equations 84). As we show in the begin-
ning of the sections on stochastic dynamics in the mathematical
section of this review, this result allows us to interpret, at a
semiquantitative level, all the important results on stochastic
dynamics.

Transition from a monomorphic to a steady state. We also
consider here the accumulation of mutations starting from a
purely monomorphic state, e.g., wild type (which one of the
two does not matter, since selection is negligible). Eventually,
mutants will be generated, one of them will become fixed (as
described), and the system will switch to pure mutant. Then
wild-type alleles will be generated, etc., and, in the long run,
the population will be, statistically speaking, in dynamic steady
state in which it switches back and forth between two mono-
morphic states. The system will gradually “forget” its initial
state, so that the probabilities of the two monomorphic states
will be equal and will be close to 1/2.

In the probability density language, this process can be de-
scribed as shown in Fig. 10a. The initial peak of the probability
density is very narrow and is localized at the zero mutant
frequency. As time goes on, a tail of the probability density
spreads into the interval between 0 and 100% mutants (equa-
tions 85 and 86) and a new peak at 100% mutants appears,
reflecting a chance of early fixation of a mutant genome. The
first peak decays and the second peak grows, until they become
equal in the steady state (Fig. 4) (equation 87). In the gas
system analogy (see “Experiments on evolution and observable
parameters” above), all water is initially condensed on the left
wall and then evaporates. The vapors diffuse into the container
and condense again on the right wall (analogous to what hap-
pens in a freezer over time). The system reaches equilibrium
when the amount of condensate on both walls is the same and
there remains some gas in between.

In addition to the language of probability density, it is useful
to visualize transition to the steady state directly, as a typical
random process. If the probability density is analogous to the
density of gas, the random dependence of the mutant fre-
quency on time corresponds to the random trajectory of a
separate gas particle. A representative Monte Carlo simulation
of the equilibration process, together with the relevant time-
scales, is shown in Fig. 10b. The steady-state process looks like
a telegraph signal between the two uniform states. The peaks
in the mutant and wild-type frequencies correspond to alleles
which were generated by mutations and started new subcolo-
nies but failed to become fixed.

Two, widely different timescales appear in both the repre-
sentative random process and the evolution of the probability
density. The typical waiting time for a switch from pure wild

type to pure mutant or back is within an order of magnitude of
the inverse mutation rate 1/m. This corresponds to the time in
which the probability density becomes symmetric between the
wild type and mutant (Fig. 4) (equations 86 and 87). The actual
time spent on a successful switch is much shorter, within an
order of magnitude of the population size N. This corresponds
to the time in which the tail of probability density is formed
between 0 and 100% (equation 85). The two timescales can be
derived either rigorously, from the evolution equation (equa-
tions 4 to 6), or approximately, from the gene fixation problem
(equation 84). Both approaches are used in the mathematical
section of this review. They agree with each other and with the
simulation in Fig. 10b.

The total probability of a polymorphic state (the frequency
of segregating sites in genome) is, at any time, much less than
1 and on the order, roughly, of mN. This agrees with the result
we obtained directly for the steady state (see above). Interest-
ingly, this value is reached on a timescale of approximately N
generations, i.e., much sooner than the two probabilities of
monomorphic states equilibrate.

Divergence of populations which have been separated and
the time correlation function. The longer timescale, 1/m, also

FIG. 10. Time dependence of the mutant frequency in the drift
regime on a long timescale. (a) Change in the probability density in
time (equations 85 to 87). Sharp peaks at f 5 0 and 1 correspond to the
monomorphic states; their probabilities are shown by the relative peak
heights (arbitrary units). (b) One Monte Carlo run is shown for Ns ,,
1 and the initial condition f0 5 0. Parameters are shown in the figure.
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appears in the time correlation function of mutant frequency,
which characterizes the timescale of random fluctuation in the
steady state and the divergence of populations which have
been separated (see “Experiments on evolution and observable
parameters” above). The value of the relative genetic distance,
D, gradually changes from 0 to a constant value corresponding
to statistically independent populations (equation 90). (Note
that some other measures of interpopulation genetic distance
used in population biology do not have an upper limit [54].) As
it turns out, the time of this transition, the half time of the
correlation function decay (equation 91), and the time in which
the probability density becomes symmetric (above) are on the
same order, the inverse mutation rate. Indeed, all three times are
determined by the waiting time for a successful gene fixation.

Stochastic Dynamics: the Selection-Drift Regime

Here we consider nonequilibrium experiments in the most
interesting interval of population sizes (Table 1). The relative
role of selection and stochasticity in population dynamics, as
derived from the evolution equation in the mathematical sec-
tion of this review, depends on the initial genetic composition.
The dynamics of growth competition is almost deterministic
(see “Deterministic dynamics and its boundaries” above), so
that this experiment need not be discussed again. In the accu-
mulation experiment, the overall dynamics is stochastic, except
for the average values of the mutant frequency and the intra-
population distance, which are, remarkably, the same as in the
corresponding deterministic conditions.

Accumulation. As in the drift regime (see above), accumu-
lation can be described as a spread of the peak of the proba-
bility density initially located at 0 (uniform wild type) into the
interval between 0 and 1. However, unlike in the drift regime,
the resulting steady state is not symmetric of a large peak (Fig.
5) (equation 48 or 49 to 51). The process of accumulation is
reduced to generation of a small tail describing rarely occur-
ring weakly polymorphic states (Fig. 5). As a result, the initial

peak at 0 does not decay greatly and the steady state is reached
in the same time as in deterministic selection (see “Determin-
istic dynamics and its boundaries” above) given by the inverse
selection coefficient (1/s), i.e., faster than all timescales in the
drift regime (equations 103 and 104).

The simulated stochastic dependence for this experiment is
shown in Fig. 11. The process starts from the generation of a
single allele, which tries to grow into a clone. The growth
initially occurs under the condition that random drift is more
important than selection. The maximum frequency that this
clone can reach is determined by the characteristic mutant
frequency at equilibrium, ;1/(Ns) which corresponds to the
clone size, 1/s copies (Fig. 5). Above this value, selection be-
comes the leading force and drift becomes a correction. Fur-
ther growth of the deleterious clone cannot occur, and it soon
becomes extinct. This appears as sparse peaks, the highest of
which reach to the length of the “tail” of the probability den-
sity, 1/(Ns) (Fig. 5) (equation 48 or 50). The half-life of a
mutant clone (width of a large peak) is the inverse selection
coefficient. Note that the typical time interval between peaks,
1/(mNs), is longer than 1/s. The former time is the waiting time
for a new allele that will be lucky to reach the size 1/s. The
latter time is the time that the lucky clone actually spends
growing and contracting before it becomes extinct again. The
ratio of the two times, mN, gives the probability of finding the
population in a polymorphic state (the area under the tail in
Fig. 5). As in the drift regime, all these estimates can be
obtained from both the evolution equation (equation 101) and
the more intuitive gene fixation approach (equation 84). For
comparison, simulation of an accumulation experiment in the
“selection” regime (mN 5 20) is shown in Fig. 12.

Divergence of separated populations and the time correla-
tion function. The characteristic times of divergence of sepa-
rated populations (Eq. 105) and the decay time of the corre-
lation function (Eq. 106) are on the order of the inverse
selection coefficient, 1/s. Both experiments show for how long,

FIG. 11. Simulated accumulation of mutants in the selection-drift regime. One random Monte Carlo run is shown for 1/s ,, N ,, 1/m and the
initial condition: f0 5 0. The double-pointed arrows and dashed line show predicted scales in time and in the mutant frequency. The solid smooth
line shows the deterministic dependence for comparison. Parameters are shown in the figure.
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on average, the system “remembers” its previous random fluc-
tuation. The answer: for the half-life of a typical mutant clone,
before it becomes extinct. This is because separate clones ap-
pear, due to mutation, at independent random times.

Reversion (fixation of an advantageous variant). A rever-
sion experiment, in which the initial population is uniformly
mutant, behaves rather differently. Although the same scales
for time and the minority allele frequency appear in this case,
they have different meaning. As in accumulation, random drift
and selection dominate in smaller and larger wild-type colo-
nies, respectively. However, in this case, selection accelerates
rather than hinders the growth of a new clone. The probability
that a single wild-type allele will manage to grow to a size equal
to the inverse selection coefficient, 1/s, is low, s. However,
above this critical size, the rest of its growth will be carried out
by selection in a deterministic manner, i.e., with a probability
close to 1 and over the deterministic timescale, 1/s (see “De-
terministic dynamics and its boundaries” above). Hence, the
bottleneck of reversion is in reaching the critical size despite
random drift; after that, a clone is likely to be fixed in the
population. Stochastic dynamics below the critical size is the
same as in the accumulation regime (selection is not impor-
tant). The average waiting time for reversion to start is deter-
mined by the fixation probability, s, and by the frequency at
which single alleles are generated in a population at each
generation, mN, which gives the time ;1/(mNs), i.e., the same
scale as the waiting time for a high peak in accumulation
regime (Fig. 11) (equation 107) (51). A few examples of re-
version curves are shown in Fig. 13. Evolution of the proba-
bility density is shown in Fig. 14, including evolution of the
density of polymorphic states (Fig. 14a) (equation 108) and of
the two probabilities of monomorphic states (Fig. 14b) (equa-
tion 107).

Sampling Effects

In the previous sections, we analyzed random fluctuations of
the mutant frequency within an ensemble of populations of
infected cells of the same finite size. We have assumed that the
value of mutant frequency, genetic distance, etc., for each
population was measured accurately by counting the numbers
of mutant and wild-type alleles in a sufficiently large sample of
genomes. The genome samples used in real experiments are, of
course, not infinitely large. Hence, the experimental estimate
of any quantity is approximate and sample dependent. The
sampling effects may distort the experimental results if the
samples are too small. In this section, we calculate how large a
sample of genomes we need to achieve a given accuracy of
measurements. We focus on the intrapopulation genetic dis-
tance (T) defined above (see “Experiments on evolution and
observable parameters”) for a separate nucleotide. To obtain
an experimental estimate of the distance, one isolates a fixed
number of sequences from the population, determines the
number of nucleotide differences for each pair of sequences,
and averages the result over all pairs. (This procedure is spe-
cific for our choice of the genetic distance.) The accuracy of the
estimate is characterized by the relative error (ε), defined as
the standard deviation divided by the average. The result is
shown in Fig. 15a (equation 116). This formula is quite general
and can be applied to any regime or particular experiment on
genetic evolution. For instance, for the maximum possible in-
trapopulation distance, T 5 0.5 (in absolute units), which cor-
responds to the half-and-half variant composition at the base
of interest, 25% accuracy is approximately reached at a sample
size of 6 genomes and 10% accuracy is predicted for a sample
of 14 genomes. As the polymorphism decreases, the sample
size required increases quickly. To reach, e.g., a 20% accuracy

FIG. 12. Simulated accumulation of mutants in the selection regime. Dashed lines show the average and the standard deviation at steady state
for mN .. 1 calculated using equations 58. Parameters are shown in the figure.
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of measurement at the genetic distance T 5 0.095 (0.95 and
0.05 composition at the base), one needs to sample ;500
genomes (of which 25 6 5 genomes will be mutant). Hence, to
study rare genetic variants, it is undesirable to simply count
sequences: one needs to employ alternative methods of quan-
titation like selective PCR. Of course, as is done often, the
genetic distance can be averaged over a large number of bases;
this saves the sample size. Such a simple solution will not work,
however, if one does not know whether the bases used for
averaging evolve under similar conditions or if one is inter-
ested in a specific base.

Experimental design requires making an educated predic-
tion of the appropriate sample size and measurement methods,
and one therefore needs to anticipate the intrapopulation ge-
netic distance, at least to within an order of magnitude. At the
same time, the actual value of the distance fluctuates between
populations and is not known before the measurement is

made. Therefore, one has to use some sort of theoretically
predicted typical distance. Making such a prediction is not
trivial. The expectation value is not a good choice, since, deep
into the stochastic regime, a population is most probably found
in a monomorphic state at any given allele. The sample size has
to be optimized with respect to polymorphic states. These
states have a low probability: if a population is completely
uniform at a site, any size sample will be monomorphic as well.
We propose to use the representative average distance (Trep),
which differs from the standard average distance in that it is
averaged over polymorphic states only. (Experimentally, this
can be accomplished by examining many sites and focusing
attention only on the few that are polymorphic.) Quantitative
differences between the two averages can be rather large. The
expressions for the representative average distance in the
steady-state population, for all three intervals of the popula-
tion size, are shown in Fig. 15b (equation 118). One can see

FIG. 13. Simulated reversion (fixation of advantageous variant) in the selection-drift regime, 1/s ,, N ,, 1/m. The reversion curve in the
deterministic limit, N 5 `, is shown by the dashed curves for comparison. Parameters are shown in the figures. (a) Beginning of the reversion
curves. Two random Monte Carlo runs are shown for each of two population sizes. (b) Full reversion curve at a smaller population size. Three
random runs are shown. Solid lines show the average and the standard deviation of the mutant frequency calculated using equation 107.
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that the smallest distance and therefore the largest samples
required correspond to the deterministic limit and the smallest
samples correspond to the drift regime. This advantage of
stochastic regimes is, however, canceled by a large number of
different populations (or, at least, similar sites) needed for a
representative assessment of polymorphism (roughly 1/mN
populations or sites). In the steady state, assaying many pop-
ulations or sites can be traded for sampling the same popula-
tion or site at many time points spaced farther than the genetic
turnover time (see the discussions of the time correlation func-
tion in the previous two sections).

Experimental Applications

The theoretical considerations presented here have useful
and important implications for understanding the evolution
not only of viruses but also of organisms generally. Their prac-
tical application, however, requires the use of appropriate ex-
periments, designed both to test the validity of the theory and
to then apply it to specific situations. In the following subsec-
tions, we present three examples of such applications. Other
important experimental issues which are outside of the scope
of our basic analytic review (phylogenetic studies, multilocus
effects, etc.) will be briefly discussed in the next section.

Virological studies in vitro. Viruses replicating in cell cul-
tures offer a convenient experimental model for studying evo-

lutionary processes. Compared to more traditional genetic
models (fruit flies and bacteria), the advantages are a relatively
easy control and sampling of genotypes and of external condi-
tions, short generation times, and, especially, high mutation
rates (for RNA viruses). Application of the results presented in
this paper and testing of their validity to these systems are
rather straightforward. We list recommendations for two kinds
of experiments.

Experiments on growth competition, aimed at comparing
the fitness of two chosen genetic variants, are common in the
virological literature (54–56, 58–60). They are typically carried
out by mixing a majority of mutant virions with wild-type
virus and monitoring the change in proportion as a function
of repeated passage in permissive cells. The selective advan-
tage(s) can then be estimated from the slope of the curve
relating the mutant frequency, f, to the number of generations
(Fig. 8). Note that the slope of the curve where it crosses 50%
is independent of whether the experiment is carried out in the
selection or the selection-drift regime. New spontaneous mu-
tations may arise, changing the virus fitness and distorting
results. This problem can be avoided if the population of in-
fected cells is chosen in the selection-drift interval (Table 1),
1/s ,, N ,, 1/m. Then, on the one hand, competition dynamics
is almost deterministic, until one of the two subpopulations
becomes very small. On the other hand, the time in which a
mutation (advantageous for the virus but unwanted by the
experimentalist) will appear, 1/(mNs), is much longer than the
measurement time, 1/s, required to resolve the two growth
rates (assuming that all selection coefficients are on the same
order and that the advantageous mutant allele is not present in
the initial population, i.e., a single ex vivo clone).

In the opposite experiment, one starts from a monomorphic
population and monitors how fast a new advantageous muta-
tion appears and outgrows the old genetic variant. To shorten
the waiting time (Fig. 13), the population size must be large, at
least in the selection-drift regime. After a new colony exceeds
the critical size imposed by the stochastic bottleneck (see “Sto-
chastic dynamics: the drift regime” above), the dynamics is
almost deterministic.

Based on our results, the evolutionary experiment is not a
suitable way to measure the spontaneous mutation rate. For
example, attempted measurements of changes in the mutation
rate in bacteria due to changes in external growth conditions
(adaptive mutation) (61) are difficult to interpret. First, the
selection coefficient is affected by the change in external con-
ditions as well, and this effect is likely to be more important
than the change in the mutation rate. As one can show (second
equation 62), in a deterministically large population, even a
substantial change in the mutation rate causes only a slight
shift in the reversion curve (Fig. 8). Only the selection coeffi-
cient can be reliably assessed in such an experiment. Second,
such experiments depend on the details of the evolutionary
model. Third, if the population is small (Fig. 13), the time
dependencies of the mutant frequency will fluctuate between
different cultures and the changes in the mutation rate cannot
be detected due to statistical error.

HIV populations in vivo. Data on the evolutionary behavior
and genetic diversity of HIV, if understood in sufficient detail,
could reveal vital information about major biological factors
acting on the virus population in vivo. Of particular interest are

FIG. 14. Reversion (fixation of advantageous variant) in the selec-
tion-drift regime, 1/s ,, N ,, 1/m. (a) Evolution of the probability
density (equation 108). (b) Probabilities of monomorphic states, p0 and
p1 (equation 107).
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the relative roles of stochastic factors and selective forces, the
role of purifying selection versus selection for diversity, and
possible variation of wild-type sequence between individuals
and tissues.

One application of this model is to use HIV genetic variation
as a tool to probe the underlying size and structure of the
infected cell population. There has been considerable contro-
versy in the literature about the effective population size of
HIV in a representative untreated patient. The concept of the
effective size was introduced by Wright as a means of referring
the intensity of genetic drift in a real population to that in an
ideal Wright-Fisher population (80); i.e., the effective size of a
real population is the size an ideal population would have if it
also had the same rate of genetic drift as that observed in the
real population. Another, perhaps more intuitive, way of think-
ing about the effective size is to consider the inbreeding effec-
tive population size, defined as the inverse of the probability
that two randomly selected individuals have a common ances-
tor in the previous generation. (This is conceptually close to
the crude “virological” definition of the effective population
size as the number of productively effective cells that produce
most of the virions that infect the next generation of produc-
tively infected cells.) If this probability of identity by descent is
low, it stands to reason that the population size must be large,

and vice versa. One begins to see how the (inbreeding) effec-
tive population size influences the genetic diversity. If the ef-
fective size is small, the probability of identity by descent is
high, and there is consequently low genetic diversity, since
individuals tend to be closely related. Both definitions apply in
the presence of weak selection as well, e.g., for the model
system shown in Fig. 1. There are several other measures of
effective size, e.g., the variance effective population size and
the eigenvalue effective population size, but these rarely give
different values. Of course, the usefulness of all these defini-
tions depends on the hypothesis that the actual population is
not too far, in the sense of its evolutionary properties, from an
ideal Wright-Fisher model with suitable parameters.

Assuming that selection is not important and the neutral
model applies, a coalescence-based approach (see “Many loci
and other aspects” below) has been used to estimate an effec-
tive size as small as 100 to 1,000 cells (45), much smaller than
the total number of productively infected cells per patient, 107

to 109 (22). At least one other study reported similar values
(66). However, other lines of evidence, including differences
among rates of accumulation in different genes (74) and very
high (44, 84) or very low (4, 5) ratios of synonymous to non-
synonymous mutations in some genes, imply that HIV popu-
lations are subject to significant selective influences. There-

FIG. 15. Error in the measured genetic distance due to sampling effects. (a) The mathematical formula relating the standard error, ε, to the
sample size, k, and to the actual genetic distance, T. (b) Representative values of the genetic distance for a polymorphic population in the three
main intervals of the population size, N. (c) Plot of ε versus k at three values of T.
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fore, population genetic methods that assume a lack of
selection may yield erroneous results.

Two of us recently developed and applied a robust method
to estimate the effective HIV population size in vivo based on
the genetic variation at close pairs of highly diverse sites (67).
As follows from the simulation examples above (Fig. 8, 9, and
13), a site cannot preserve a high diversity (f . 0.5) indefinitely.
Early in infection, the HIV population is almost uniform ge-
netically or has a limited number of sequences, due to the
bottleneck that occurs at transmission and to early competition
between clones (12, 27, 46, 86). Therefore, highly diverse sites
are sites that are caught in the act of “reversion” from mutant
to wild type (i.e., of advantageous substitution). The basis for
this test was to select two such sites, A(a), and B(b), where the
lowercase and capital letters denote mutant and wild type,
respectively, and then classify all sequences in the population
into four groups (haplotypes): ab, Ab, aB, and AB. During
reversion, the population starts from an almost uniform hap-
lotype ab and arrives at an almost uniform haplotype AB. The
two other haplotypes are transient. The idea of the test is that,
deep in a stochastic regime and given a limited sample size,
one of the four haplotype groups will be empty at any time,
because the time at which reversion ensues is random. Suppose
that the population is deep in the selection-drift regime. Two
sites revert typically at different random times, even if their
selection coefficients are equal (Fig. 13). Nearly simultaneous
reversion can happen accidentally. In all cases, as can be
shown, the number of well-represented subclones (i.e., the
number found in a sample of the usual size [10 to 30 clones])
is typically two, rarely three, and much more rarely four, at any
time point.

Using sequence databases for HIV pro and env genes from
drug-naive individuals (27, 44), we found that this effect is
absent for close pairs of bases. We checked that this effect is
not sensitive to variation of the initial genetic composition and
some other factors assumed in the model and estimated the
effect of recombination (derived from kinetic data) on the test
to be numerically small as well. We therefore were able to
conclude that a steady-state HIV population in an untreated
individual, with respect to evolution of separate bases, is either
in or at the border of the deterministic interval of population
sizes.

Some authors considered a possibility that an HIV popula-
tion may consist of weakly connected small populations. Shed-
ding viruses from these subpopulations into the peripheral
blood could explain the presence of all four haplotypes in the
above test, in apparent contrast to our conclusion. Indeed,
HIV-infected cells are located within lymphoid tissue in visu-
ally distinct islands (64). However, different islands exchange
virions and infected cells and may or may not be weakly con-
nected genetically. The strong overlap of the island patterns
obtained for different virus strains (64) proves that the island
structure is due to nonuniform distribution of infectible cells
rather than to random seeding by the virus. Next, estimates
based on studies of the clearance rate of free virus from pe-
ripheral blood (85), on HIV RNA quantitation in the lymphoid
tissue (22), and on the decay rate of infectious virus titer under
highly active antiretroviral therapy (62) suggest that a consid-
erable portion of virus particles produced in the tissue drain
into the blood (within a few hours or less, from where they are

removed within a few minutes). This implies that a good por-
tion of virus particles infect cells far from the cells that pro-
duced them, suggesting strong virus transfer between the is-
lands within the same tissue. On the other hand, viruses
isolated from some locations (semen and the central nervous
system) show phylogeny distinct from that of the main virus
reservoir in the body. Genetic sampling from different islands
could clear the issue (28).

Given a relatively weak role of stochastic effects detected, we
decided to test which factors shape evolution in the HIV pro-
tease (pro) gene (68). Using the same database of pro se-
quences, we observed that variation was restricted to rare
bases: an average base was variable in about 16% of patients.
The intrapatient distance per individual variable site, 27%, was
similar for synonymous and nonsynonymous sites, although
synonymous variable sites were twice as abundant, implying
that purifying selection is the dominant kind of selection. We
explained these facts within the one-locus model of evolution
by assuming deterministic evolution within individuals and ran-
dom sampling during the transmission between individuals.
We considered different variants of the model with transmis-
sion of one and several genomes and with coinfection from
independent sources. The model explained the variable sites as
slightly deleterious mutants that are slowly being replaced with
the better-fit variant during individual infection. In the case of
a single-source transmission, genetic bottlenecks at the mo-
ment of transmission effectively suppress selection, allowing
mutants to accumulate along the transmission chain to the high
levels observed. However, we found that even very rare coin-
fections from independent sources are able to counteract the
bottleneck effect and keep mutants at low levels. If such coin-
fections occur, the plausible explanation of the high level of
mutants in an inoculum is variation of the best-fit sequence
between individuals due to variation in the specific immune
response, combined with coselection. In this model, variation
in pro is due to a cascade of mutations compensating for early
antigenic escape mutations. Note that our analysis was re-
stricted to the single-locus approximation (see below).

General applications. The progress of evolution, in general,
may be limited by the time it takes for a new advantageous (in
our notation, wild-type) allele to appear and become fixed in
the population. Figure 16 shows schematically the time re-
quired to reach a 50% composition as a function of the pop-
ulation size. An interesting conclusion about the relative role
of selection and randomness follows from this diagram. The
reversion half time depends on the population size. The short-
est time, given mostly by the inverse selection coefficient, is
reached in the deterministic limit, mN .. 1. This implies
population sizes larger than 108 to 109 genomes for DNA
viruses and bacteria and 1011 to 1012 for higher organisms.
Such a population size exceeds the total size of any species
higher on the evolutionary scale than insects. On the other
hand, a mutation in a small population with a size smaller than
the inverse selection coefficient (drift regime, in our terms)
would be fixed only after a number of generations given by the
inverse mutation rate, 1/m, corresponding to timescales of
planetary development. Put another way, nucleotides with a
very small selective advantage compared to the inverse popu-
lation size evolve very slowly. The characteristic values of se-
lective advantage for the most important mutations (in an
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evolutionary sense) are unknown. Still, the above consider-
ations suggest the possibility that the evolution of higher or-
ganisms may be driven, mostly, by nucleotides with s larger
than the inverse population size (provided that they are suffi-
ciently frequent in the genome), i.e., within the selection-drift
interval (Table 1). Then the rate of evolution does not have to
be unreasonably low and the size of a population does not have
to be unreasonably large. If this is the case, one can conclude
that the two factors, random drift and selection, are equally
important for the rate of evolution on very large timescales
(millions of years) and that neither is a small correction. The
reversion (fixation) half time within the interval 1/s , N , 1/m
is ;1/(mNs).

Many Loci and Other Aspects

The distinction between deterministic and stochastic evolu-
tionary genetic processes is critical—under a deterministic re-
gime, the fate of a novel mutation or allele can be known with
certainty; under a stochastic regime, we are able to character-
ize only the statistical properties of allele frequencies and
fixation times. The neutral and the deterministic cases repre-
sent the ends of a spectrum, and precisely where a population
sits depends most strongly, on its effective size. However, much
of the theory relating effective population size and the stochas-
tic-deterministic continuum had been worked out for simple
models involving two (as in the present review) or, at most, a
handful of alleles (37). These developments have allowed pop-
ulation geneticists to characterize the qualitative behavior of
genes in populations undergoing a variety of dynamic pro-
cesses, e.g., population size change, subdivision, and selection.
Nonetheless, the assumptions and restrictions of these simple
models typically preclude their use as descriptors of real pop-
ulations, except in some particular cases (below).

In 1982, Kingman (39, 40) introduced a new way of studying
the stochastic behavior of genes in a population. His frame-
work—the coalescent—characterizes the genealogies of genes
(or gene fragments), specifically the statistical distribution of

times to common ancestors. It assumes the neutral model of
evolution so that phylogenetic branching and accumulation of
mutations are independent processes. Just as we estimated
above (see “Decay of the polymorphic state and gene fixa-
tion”), the average time to the most recent common ancestor
of a sample of genes is, within a numerical factor which de-
pends on the sample size, the effective population size. The
coalescent incorporates the same information as allele-based
methods but in a form more relevant for today’s evolutionary
geneticist. This is largely because the raw data of molecular
evolutionary studies in the last 15 years have been the molec-
ular sequences, and there is an extensive and well-developed
literature on molecular phylogenetic reconstruction (reference
65 and references therein). Studies on the coalescent have also
shown that there is an increase in the power of parameter
estimation as more independent loci are analyzed. Selection—
for a long time the thorn in the side of the coalescent theo-
rist—can, in principle, be accommodated within a coalescent-
like framework. The recently developed inclusion of selection
in a genealogical framework (42, 55) requires the construction
of an ancestral selection graph, akin to a coalescent genealogy,
which has the unusual property of coalescing and splitting as
one moves back in time. The reader has to keep in mind,
though, that a mathematical theory on a network (the case with
selection) is technically much harder to handle (with or with-
out computer simulation) than a theory made for the tree
topology as the neutral coalescent. The tree theory, but not the
network theory, can be reduced to one-dimensional chain of
equations. (Similar issues arise in physics, in theoretical studies
of hopping transport of electrons [63, 72].) Still, this recent
achievement should stimulate the development of novel meth-
ods that work with selection as well.

In some cases, recombination or point mutations break link-
age disequilibrium and make loci almost independent, so that
the one-locus approximation applies directly. One such case is
when strong recombination is present in the system and the
variable loci are spread far apart (for HIV, the respective
length is predicted to be around 100 nucleotides or longer, if
superinfection protection is efficient [67]). If the recombina-
tion rate is low, Muller’s ratchet (6, 13, 14, 17, 53) may operate.
With Muller’s ratchet, random drift can lead to the elimination
of the fittest genomes from a population. Once a better-fit
haplotype is accidentally lost from a recombination-free pop-
ulation, it cannot reappear, thus clicking the ratchet another
notch. Successive “clicks” cause the population to become suc-
cessively less fit, on average. Back mutations can, in principle,
restore the disappearing better-fit haplotypes. For a long seg-
ment of genome of a replication-competent virus, they are
expected to be much less likely than the forward mutations,
since the frequency of deleterious substitutions is expected to
be low. As follows from Monte Carlo simulation, which we
hope to discuss elsewhere, back mutations can prevent Mul-
ler’s ratchet only for sites with large selection coefficients, s 5
0.1 to 0.2, and provided that the gene segment is short.

Another important consideration is that selective pressures
on some parts of the genome must also have an effect else-
where. Such “background” selection may explain the very small
effective size of HIV obtained from the env gene diversity
under the neutral approximation. Charlesworth and colleagues
(7, 8, 57) have shown that if an unsequenced region of a

FIG. 16. Dependence of reversion time on population size. The
schematic plot shows trev, the time required to reach 50% composition
in the reversion experiment (fixation of advantageous allele), as a
function of the population size, N.
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genome is under selection and is linked to the region under
study, depressed estimates of effective size are obtained. Po-
tentially, then, selective pressures on gag or pol can influence
diversity in env. However, linkage disequilibrium obviously has
an effect beyond simply lowering the effective size, and it
speaks to the issue of fitness at the unit of the individual virion.
If there is linkage disequilibrium, does it really make sense to
look for the effects of immune-driven selection only in env or
gag, as many studies have done (3, 70, 83)? To what extent is
the fitness advantage of mutations in env, for instance, bal-
anced by the loss of fitness due to mutations in pol? Such
“interaction” between loci in a small population may be caused
by linkage alone and applies even to mutations that additively
affect the fitness of a genome. To make things more complex,
nonadditive compensatory mutations (epistasis) exist, due to
actual biological interaction between loci, at both the nucleo-
tide and protein levels. Moreover, in vesicular stomatitis virus
systems, epistasis may be the factor counteracting the loss of
fitness due to Muller’s ratchet (16). Compensatory mutations,
which become advantageous only after initial resistance muta-
tions occur, have also observed in HIV-infected patients
treated with protease inhibitors (11). The development of mo-
lecular techniques that allow full-length HIV genomes to be
sequenced (69) means that it is only a matter of time before
genetic data become available to study the evolutionary pro-
cesses of linkage disequilibrium, background selection, and
compensation in infected individuals.

Conclusions

We have analyzed in depth a broad range of problems in
evolutionary dynamics in the framework of a simple one-locus,
two-allele population model, which includes three basic fac-
tors: random drift, point mutation, and selection. We found
that (as long as the mutation rate is lower than the selection
coefficient) the dynamic properties differ drastically in three
wide intervals of the population size that we call the drift,
selection-drift, and selection regimes. Transition between sto-
chastic and deterministic behavior of genetic evolution occurs
in the intermediate selection-drift regime, which is expected to
be very wide in the population size, especially for DNA sys-
tems. In this regime, deterministic laws govern genetically
highly polymorphic populations, and almost uniform popula-
tions evolve stochastically.

Estimates of typical population sizes and of the time in
which new advantageous alleles appear and become fixed in
the population suggest that higher organisms may evolve while
in the selection-drift regime. If this is the case, the speed of
evolution depends on three parameters: mutation rate, selec-
tive advantage, and population size. Hence, selection pressure
and random drift, whose relative importance for evolution is
often disputed in the literature, are equally important, al-
though they act differently: selection promotes evolution, and
random drift slows it down.

The theory provides recommendations for the size of the
population in different bacteriological and virological experi-
ments in vitro aimed at either comparing the fitness of different
mutants or measuring the mutation rate. For HIV populations
in vivo, theory based on the purifying selection alone predicts
either a weak diversity or a very low genetic turnover rate.

Experimental searches for rapidly varying bases can provide
biological evidence for selection for diversity due to different
environments, a changing immune response, changes in host
cell populations with time, and other important aspects of HIV
infection.

Naturally, with any research program that requires theory to
be integrated with data, there is an inevitable tension between
experimental biologists, who deal daily with the complexity of
real biological systems, and theoretical biologists, who “simpli-
fy, simplify, simplify” in the name of tractability. In this work,
our analysis has been limited to the simplest possible case:
evolution of a single locus with only two alleles. Many impor-
tant aspects of evolution, including the effects of multiple loci,
recombination, coselection, and migration, were not consid-
ered. Nevertheless, in-depth consideration of this simple sys-
tem has yielded a surprisingly rich set of results, which should
be very useful for the design of experiments in evolution and
for the interpretation of patterns of genetic variation in natural
infection. In the future, however, we see greater reliance on
the fusion of analytic and computational methods as a means
of simulating the complexity of real populations. By tying these
computer-intensive methods to well-characterized mathemat-
ical and statistical methods, one has the advantage of using
standard inferential procedures without sacrificing too much in
the way of realism. However, the old adage that one has to
walk before one can run applies to population genetics as it
does elsewhere, and understanding simple evolutionary models
is perhaps the surest route to coming to grips with the com-
plexity of virus evolution.

MATHEMATICAL RESULTS AND DERIVATIONS

Description of the Model and the Evolution Equation

In this section, we will derive the diffusion-type differential
equation and complement it with the boundary conditions.
First, we derive the discrete Markovian equation for the virus
population model; second, we reduce it to the continuous
diffusion equation; and third, we determine the boundary con-
ditions for the diffusion equation, in different intervals of the
population size. In other sections, we will solve the appropriate
set of equations and boundary conditions for each interval of N
and different initial conditions. Table 2 contains a list of the
principal notation used in this section.

Main results. We show that the stochastic evolution of the
virus population is described by one of two different sets of
differential equations and boundary conditions, depending on
the interval of the population size, N. A large population, mN
.. 1/ln N, usually has many copies of both the wild-type and
mutant genomes. The corresponding evolution equation and
the boundary conditions have the form (32)

]r

]t 5 2
]q
]f (1)

q~f,t! 5 2
1

2N
]

]f @f~1 2 f!r# 2 sf~1 2 f!r 2 m~2f 2 1!r (2)

q~f,t!f30 5 q~f,t!f31 5 0 (3)

where f is the mutant frequency, r is the probability density, t
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is the generation number (time), and s is the selection coeffi-
cient. Equations 1 to 3 are valid under the conditions s ,, 1, m
,, 1, and mN .. 1/ln N. In this case, t and f can be treated
(approximately) as continuous variables. Effects of the three
terms in the right-hand side of the evolution equation given by
equations 1 and 2 are illustrated in Fig. 2.

A useful analogy between the probability density and the
density of a gas between two walls is discussed in the qualita-
tive section of this review (Fig. 3). In this analogy, equation 1
expresses the fact that gas particles do not appear or disappear
but only travel from one location to another. The quantity
q(f,t) in equation 2 is the “probability flux,” analogous to the
gas flux density defined as the net number of particles crossing
a plane at f from left to right per unit area per unit time. Thus,
the evolution equation written in the form of equation 1 ex-
presses the fact that the probability density is a locally con-
served quantity, just like a gas density. The boundary condi-
tions in equation 3 state that the probability flux vanishes at the
boundaries of the allowed interval in f, similar to gas particles
being prohibited from crossing the confining walls (Fig. 3b).

In small populations, where N ,, 1/[mln(1/m)] (see below),
the population can be found, with a finite probability, in a
purely monomorphic state, of f 5 0 or 1 (similar to condensa-
tion of gas at cold walls). In this interval, we break up the total
probability density into a sum of the continuous probability
density and of two singular terms, as given by

r~f,t! 5 p0~t!d~f! 1 p1~t!d~1 2 f! 1 g~f,t! (4)

where p0 and p1 are the probabilities of having pure wild-type
and pure mutant, respectively; d(f) denotes the Dirac delta
function; and g(f,t), where f(1 2 f) .. 1/N, is the continuous
part of the probability density. The boundary conditions are

dp0

dt 5 2 q~0,t!,
dp1

dt 5 q~1,t!, N ,, 1/@mln(1/m)] (5)

2mNp0 5 @fg~f!#f30, 2mNp1 5 @~1 2 f!g~f!#f31 (6)

The first pair of conditions (equations 5) describes the accu-
mulation or depletion of probability at the two boundaries,
analogous to condensation or evaporation of gas (Fig. 3c). The
second pair (equations 6) reflects the fact that transition be-
tween a monomorphic state, f 5 0 or 1, and the closest poly-
morphic state, f 5 1/N or (N 2 1)/N, respectively, can occur
due to a mutation only. This pair of equations has to be derived
from the first principles, i.e., the discrete virus population
model (below). The differential equation for the continuous
part of the probability density, g(f,t), has a form

]r

]t 5 2
]q
]f , q~f,t! 5 2

1
2N

]

]f @f~1 2 f!r# 2 sf~1 2 f!r (7)

which differs from the expressions at large N (equations 1 and
2), in that the term with m in equation 2 is absent. The muta-
tion rate enters the problem through the boundary conditions
(equation 6) only.

One can easily obtain the upper bound for N, within which
the above boundary conditions apply, from the boundary con-
ditions themselves. The probability of a polymorphic state is
given by *0

1 g(f)df. As follows from equation 6, near the bound-
aries g(f) diverges and is given by g(f) ; 2mN p0/f and g(f) ;
2m N p1/(1 2 f). The integral of g(f) is mostly contributed from
f . 1 or 0 and is truncated at f(1 2 f) ; 1/N. The resulting
probability of a polymorphic state is comparable to the prob-
ability of a monomorphic state, p0 1 p1, at mN log N . 1, as we
stated above.

Note that the validity of these equations, as we discussed in
the qualitative section of this review, is not restricted to the
virus population model. The same diffusion equation (equation
1 and 2) applies to many other haploid one-locus, two-allele
populations, which include the same three factors: random
sampling of genomes, symmetric mutations, and purifying se-
lection. Should some other factors come into consideration,
such as allelic dominance in a diploid population or time fluc-
tuations of selection coefficient or of other parameters, a more
general equation of similar form can be written (see “stochastic
equation of evolution” below) (33). In principle, the approach
can be generalized for many-allele or multiple loci using partial
derivatives in haplotype frequencies (37).

Now we proceed with derivations of all these formulas.
Virus population model. The model (as discussed in the

qualitative section of this review) considers an asexual popu-
lation of N cells infected with two genetic variants of a virus: n
cells are infected with “mutant” virus, and N 2 n cells are
infected with “wild-type” virus. The total population size N is
fixed, while n changes in time. During a generation step, each
mutant-infected cell produces b1 mutant virions and then dies,
and each wild-type-infected cell produces b2 wild-type virions
and dies (Fig. 1b). The respective numbers of virions per cell,
b1 and b2, are assumed to be large, b1 .. 1, b2 .. 1, and differ
slightly for the two alleles

b1 5 b2~1 2 s! (8)

TABLE 2. Mathematical notation

Symbol Definition

A, B, C, F...........Undetermined constants or functions
D .........................Relative interpopulation distance per site
d(x)......................Dirac delta function of x
dij .........................Kroneker symbol: 1 if i 5 j and 0 otherwise
f ...........................Mutant frequency
G .........................Gene fixation probability
g...........................Continuous part of the probability density
K..........................Time correlation function
m..........................Mutation rate per generation per site
M .........................Mean change in the mutant frequency per unit time
N .........................Population size (productively infected cell number)
n ..........................Mutant genome number
Pn ........................Probability of having n mutant genomes
p0.........................Probability of having a pure wild-type population
p1.........................Probability of having a pure mutant population
q ..........................Probability density flux
r ..........................Probability density of the mutant frequency
s ...........................Selection coefficient
T ..........................Intrapatient genetic distance per site
t ...........................Time (generation number)
Vx.........................Variance of x
x...........................Any parameter (for this table only)
x# ...........................Expectation value of x
xss, xss ..................Value of x in steady state
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where s, s ,, 1, is, by definition, the selection coefficient (mu-
tation cost), reflecting the difference in fitness. From all the
virions produced per generation, N virions are sampled ran-
domly to infect new generation of cells. Each virion, on infect-
ing a cell, can mutate into the opposite genetic variant with a
probability m, m ,, 1. The virus population model described is
a particular case of the Wright-Fisher population with discrete
time.

Stochastic equation of evolution. (i) Discrete Markovian
equation. Let p(n,t) be the probability of n mutant cells at time
t, where t is an integer that numbers generations and n can
change from 0 through N. If consecutive generations do not
overlap, p(n,t) is a Markovian process described by a discrete
evolution equation

p~n,t 1 1! 5 O
n950

N

P~nun9!p~n9,t! (9)

where P(nun9) is the conditional probability of having n mu-
tants, given that their number at the previous step was n9. In
this section, we derive P(nun9) for the virus population model
introduced in the qualitative section of this review.

First, we obtain the conditional probability P(nun9) in equa-
tion 9, neglecting mutation events and denoting the result
P0(nun9). Suppose that the number of mutants in some gener-
ation is n9. The total numbers of virions produced by all mu-
tant- and all wild-type-infected cells are

B1 5 b1n9, B2 5 b2~N 2 n9! (10)

respectively. A biologically reasonable assumption is b1, b2 ..
1 (above). If n is the number of new mutant-infected cells, then
the numbers of mutant and wild-type virions which infect must
be n and N 2 n virions, respectively. The probability of n new
mutant cells, P0(nun9), is proportional to the number of possi-
ble ways in which one can choose n mutant virions from B1

possible mutant virions and N 2 n wild-type virions from B2

possible wild-type virions

P0~nun9! 5 A
~n9!n~N 2 n9!N2n~1 2 s!n

n!~N 2 n!! (11)

where we used equations 8 and 10 and the constant A is
determined by the condition Sn P0(nun9) 5 1.

We now take mutations into consideration. Suppose, at the
moment of infection of new cells by n mutant and N 2 n
wild-type virions, m1 forward and m2 reverse mutations occur
(Fig. 1b). The resulting number of mutant-infected cells, n99,
will be n99 5 n 1 m1 2 m2. The probability of m2 reverse
mutations among n infecting virions, if n is large, is given by
Poisson statistics with the average mn

p~m2un! 5
~mn!m2

m2!
e2mn, m2 5 0,1, . . . (12)

(If n is not large, equation 12 still is valid for m2 5 0 and 1,
which are the only important values in this case, since we
assume m ,, 1 everywhere in the present work.) Analogously,
the probability of m1 forward mutations is p(m1uN 2 n). As a
result, for the conditional probability P(n99un9), we obtain

P~n0un9! 5

O
n50

N O
m150

N2n O
m250

n

dn0,n1m12m2p~m1uN 2 n!p~m2un!P0~nun9!. (13)

where P0(nun9) is given by equation 11 and the Kroneker sym-
bol di,j is 1 if i 5 j and 0 otherwise.

(ii) Diffusion equation limit. The discrete evolution equa-
tion given by equations 9, 11, and 13 may be suitable for
computer simulation, but is very inconvenient for analytic
treatment. In addition, it contains many model-dependent de-
tails which are not important at long timescales and in large
populations and could be best disregarded. When both sub-
populations are large (n .. 1 and N 2 n .. 1), equation 9 can
be transformed to a differential form. In this case, the condi-
tional probability, P(nun9), changes slowly in n and n9,
uP(nun9) 2 P(n 1 1un9)u ,, P(nun9), uP(nun9 1 1) 2 P(nun9)u ,,
P(nun9), and can be approximated by a continuous function of
n and n9. Substituting the asymptotic formula, n! . (2pn)1/2(n/
e)n, into equation 11, we find that P0(nun9) has a narrow max-
imum at n9 . n. Rewriting P0(nun9) 5 exp [ln (P0(nun9))] and
expanding the argument of the exponential in n9 up to the
second-order terms in n9 2 n, we obtain

P0~nun9! 5 A expH2
@n 2 n9 1 sn9~1 2 n9/N!#2

2n9~1 2 n9/N! J (14)

Note that for the characteristic half-width in equation 14 we
have 1 ,, un 2 n9u ,, min (n9, N 2 n9), which confirms that
P0(nun9) can be considered a smooth function of its variables.

Note that the style of the last paragraph is the approximate
derivation “with a large parameter,” standard for theoretical
physics. In this case, large parameters are n, N, 1/s, and 1/m.
One makes a guess that the function p(nun9) is smooth and
verifies its consistency later, after the result was obtained. To
avoid a vicious circle, one checks alternative assumptions as
well. A more rigorous way, usual in population biology, would
be to evaluate probability p(n, n9) in the limit N 3 `, m 3 0,
s 3 0 while mN and sN are constant. In our experience, the
method we employ almost always leads to a correct result and
is easier to use, especially when there exists an independent
verification of the result.

We now obtain a simplified expression for the full condi-
tional probability in equation 13 using the fact that mutations
are rare (m ,, 1), so that the probable values of m1 and m2 are
much smaller than those of N 2 n and n. We substitute n0 2
m1 1 m2 for n in the arguments of both p functions and of the
function P0 in the right-hand side of equation 13 and expand
these functions in m1 2 m2, up to the first-order terms. The
resulting double sum in m1 and m2 can be evaluated exactly
with the use of equation 12, which yields, within the same
accuracy,

P~nun9! 5 ~1 1 2m! P0 ~nun9!

1 m~2n 2 N!
]

]nP~nun9! . P0~n 1 m~2n9 2 N!un9! (15)

Since the probability p(n, t), with one exception discussed be-
low separately, is a smooth function of n, it will be more
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convenient, from now on, to consider the probability density
p(f,t) of the mutant frequency f [ n/N, normalized by the usual
condition *0

1 df r(f,t) 5 1.The two definitions are related, as
given by r(f,t) 5 Np(Nf,t). In terms of r(f,t), the evolution
equation, given by equations 9, 14, and 15, can be written as

r~f,t 1 e! 5 Edf9Pe~fuf9!r~f9,t! (16)

Pe~fuf9! 5 ~2peV~f9!!21⁄2 exp F 2
~f 2 f9 2 eM~f9!!2

2eV~f9! G (17)

M~f! 5 2 sf~1 2 f! 2 m~2f 2 1! (18)

V~f! 5
1
N f~1 2 f! (19)

where e 5 1 is the time between generations. In the continuous
approximation, e in the above expressions can be replaced by
any small time interval. The notations M(f) and V(f), intro-
duced in equations 18 and 19, have meanings of the expecta-
tion value and of the variance of change in f per unit time,
respectively. One can present them in the general form

M~f9! 5 e21Edf~f 2 f9!Pe~fuf9!, (20)

V~f9! 5 e21Edf~f 2 f9 2 eM~f9!!2Pe~fuf9! (21)

The validity of the latter relationships can be checked substi-
tuting equation 17 into equations 20 and 21.

As shown below, the integral equation, (equations 16 and
17) can be transformed to the Kolmogorov forward equation

]r

]t 5
1
2

]2

]f 2~Vr! 2
]

]f~Mr! (22)

which, together with equations 18 and 19, yields the promised
diffusion equation, equations 1 and 2.

We will derive equation 22 from equations 16 and 17 in a
general form, without specifying the model-dependent param-
eters M and V from equations 1 and 2. We will assume that V(f)
,, 1 and that the higher momenta (f 2 f9)3, (f 2 f9)4, . . . of the
conditional probablity Pe(fuf9) are proportional to powers of e
higher than 1. These assumptions are valid for our model, as
can be checked using equations 17 to 19 (see “Virus population
model” above). The derivation that follows is well known.

Consider an arbitrary function, A(f), localized in the interval
0 , f , 1 far from its ends, so that A(f) and its derivative vanish
at f 5 0 and f 5 1. We also introduce the expectation value

A~t! 5 Edf A~f!r~f,t! (23)

Multiplying both sides of equation 16 by A(f) and integrating in
f, we have

A~t 1 e! 5 Edf9r~f9,t!Edf A~f!Pe~fuf9! (24)

Since the characteristic width of Pe(fuf9) in terms of f 2 f9 is
small, we are allowed to expand A(f) in the integrand in equa-
tion 24 in a series of f 2 f9. Evaluating the resulting integral
over f and discarding terms of higher than first order in e, we
get

A~t 1 e! 5 A~t! 1 eEdf9r~f9,t!F1
2V~f9!

d2A~f9!
df92 1 M~f9!

dA~f9!
df9 G (25)

where we used the definitions in equations 20 and 21. Higher-
than-second terms of expansion of A(f9) can be neglected due
to the above assumption. Evaluating the integral over f9 in
equation 25 by parts and using the definition of the time de-
rivative, we get

dA
dt 5 Edf9 A~f9! F1

2
]2

]f92 SV~f9!r~f9!D 2
]

]f9SM~f9!r~ f9!DG
(26)

We arrive at the desired evolution equation (equation 22) by
choosing A(f9) 5 d(f9 2 f). Here the width of the “delta func-
tion” is assumed to be much larger than V(f) but much smaller
than the characteristic values of f at which the density function
r(f) changes noticeably.

Boundary conditions: properties of an almost monomorphic
population. In a large population, N .. 1/m, the boundary
conditions have a form 3, which states that the probability
density flux q(f,t), defined as such by equation 1, must vanish at
the boundaries, f 5 0 and f 5 1. This follows from the conti-
nuity conditions at the boundaries and from the understanding
that monomorphic states, in which f is exactly 0 or exactly 1, are
very unlikely to occur when the population is large due to a
high mutation rate per population (Nm .. 1). As we show now,
the flux does not vanish at the boundaries in smaller (but still
very large) systems.

Suppose, first, that boundary conditions in equation 3 do
apply. As follows from equations 2 and 3, the function r(f,t)
diverges near the boundaries at mN , 1/2. Indeed, solving the
equation q(f,t) [ 0 near f 5 0 and near f 5 1, one obtains

r~f,t! . HC0 f 2mN21, f ,, 1
C1~1 2 f!2mN21, 1 2 f ,, 1 (27)

where C0 and C1 are constants. Integrating the first of equa-
tions 27 from f 5 0 to f ; 1/2 and the second from f ; 1/2 to
f 5 1, one finds that the region of f, 1 2 f, such that ln (1/f) or
ln [1/(1 2 f)] ; 1/mN, contributes most to the normalization
integral. If the population is not too small, Nm ln N .. 1, these
values of f correspond to many copies of a minority allele, f,
1 2 f .. 1/N. Therefore, for the probability of monomorphic
states we have p0, p1 ,, 1. The boundary conditions given by
equation 3 apply. If, however, the population is small, Nm ln N
,, 1, the most probable values of f are in the region f, 1 2 f ,,
1/N, corresponding to much less than one minority copy per
entire population. The above result indicates that the popula-
tion can be found, with a finite and even high (close to 1)
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probability, in a state in which f is exactly 0 or 1. To account for
this fact, we separate singular terms in r(f), as given by equa-
tion 4, and obtain new boundary conditions. Since we now have
two more time-dependent variables, P0 and p1, unlike in the
case with a large N, we will need four rather than two condi-
tions at the boundaries. The first pair of equations (equations
5) describe the continuity condition at the boundaries. We now
derive the second pair.

We return to the discrete probability notation, p(n). It suf-
fices to consider only one of the boundary regions in n, say,
n ,, N; the conditions for the other region, N 2 n ,, 1, are
analogous. Therefore, the probability has two components: a
large value p(0,t) [ p0 (t) and a relatively small part p(n,t), n Þ
0, which changes slowly with n at n .. 1. [Strictly speaking,
p(n,t) is diverging as 1/n as n3 0 (equation 27). Divergence of
the integral *n p(n,t)dn, however, is only logarithmic at best,
which is sufficiently slow for what follows.]

We start by simplifying equations 11 and 13 for P0(nun9) and
P(nun9). Using the condition n ,, N, equation 11 gives

P0~nun9! .
@n9~1 2 s!#n

n! e-n9~1-s! (28)

The same inequality (n ,, N) allows one to neglect the reverse
mutations, keeping only terms with m2 5 0 in equation 13.
Next, the condition of small mN means that even a single
forward mutation per generation per entire population is a
rare event. Hence, one can discard in equation 13 all terms
with m1 $ 1, except the term with m1 5 1 for particular values
n0 5 1, n9 5 0. The latter term has to be kept since the
transition between states with n9 5 0 and n0 5 1 cannot occur
by means other than a mutation. As a result, the expression for
P(nun9) simplifies to

P~nun9! 5 ~1 2 mN!P0~nun9! 1 mNdn,1dn9,0 (29)

We now introduce the characteristic polynomial of the proba-
bility function w(x,t)

w~x,t! 5 O
n50

N

p~n,t!~1 2 x!n ; p0~t! 1 f~x,t! (30)

where 0 , x , 1, and f(x,t) is a sum over the continuous part
of p(n,t) for n Þ 0 only. The evolution equation for w(x,t),
which can be obtained from equations 9 and 28 to 30, has a
form

w~x,t 1 1! 5 ~1 2 mN!w@1 2 e2x~12s!, t# 1 mN~1 2 x!p0~t! (31)

The characteristic values of n in p(n,t) for n Þ 0 are large (n ..
1). Hence, as one can see from equation 30, the characteristic
scale of x for function w(x,t) is small (x ,, 1). We expand the
right-hand side of equation 31 to the second-order terms in
small x, which yields

dp0

dt 1
]f

]t 5 2Ssx 1
x2

2D]f

]x 2 xmNp0 (32)

Here we substituted w 5 p0 1 f and made use of the strong

inequalities s ,, 1, mN ,, 1, and f ,, p0. We notice that at
x ,, 1, the function f(x,t) represents the Laplace transform

f~x,t! 5 E
01

`

dn e-xnp~n,t! ; +x$p~n,t!% (33)

Using the operator of the Laplace transform +x, one can re-
write equation 32 in the form

+xH]p~n,t!
]t 1

]q~n,t!
]n J 5 F2q~n,t!n30 2

dp0

dt G
1

x
2 $@np~n,t!#n30 2 2mNp0% (34)

where q(n,t) is the probability flux

q~n,t! 5 2
1
2

]~np!

]n 2 snp (35)

which coincides with definition of q in equation 7 at f [ n/N ,,
1. It is important that the probability function, p(n,t), together
with its derivatives at n Þ 0, is a nonsingular function of n,
meaning that it does not contain a delta function or its deriv-
atives. The singular part of the probability function is already
separated in the term p0. As is well known, a Laplace transform
+x of a nonsingular function cannot be constant and cannot
increase with x in the limit of large x. Therefore, both brack-
eted terms in equation 34 must be zero, and we arrive at the
boundary conditions at f 3 0 (equations 5 and 6). Since the
left-hand side of equation 34 turns out to be zero, the argu-
ment of the Laplace operator in braces is zero as well. This
yields the differential evolution equation (equation 7) at f ,, 1.
The boundary conditions at another boundary, f3 1 (n3 N),
are obtained in the same manner.

Experiments on Evolution and Observable Parameters

In this section, we define rigorously the observable param-
eters introduced in the qualitative section of this review.

Let parameter A(f) be a deterministic function of the ran-
dom mutant frequency f. The expectation value of A, A# , and
the variance, VA, are defined by

A~t! ;E
0

1

df A~f!r~f,t! (36)

VA~t! ; ~A 2 A!2 5 A2 2 ~A!2 (37)

VA is equal to the square of the standard deviation of param-
eter A.

The intrapopulation genetic distance

T 5 2f~1 2 f! (38)

is the probability that a pair of sequences randomly sampled
from a population with composition f differ at a given nucleo-
tide; it varies between 0 and 0.5 (Nei’s nucleotide diversity
measure). The expectation values of parameters f and T are
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given by equations 36 and 37, with A(f) 5 f and A(f) 5 2f(1 2
f), respectively. The variance Vf and the average T# are related:

Vf 5 f~1 2 f! 2 T/2 (39)

We also introduce the interpopulation genetic distance, T12,
which is defined as the probability that a pair of genomes
sampled from two different populations with mutant frequen-
cies f1 and f2 differ at a given nucleotide, and the relative
distance between populations, D, as follows:

T12 5 f1~1 2 f2! 1 f2~1 2 f1! (40)

D 5 T12 2 ~T1 1 T2!/2 5 ~f1 2 f2!
2 (41)

If the two populations are statistically independent, one has
D# 5 (f1 2 f#2)2 1 Vf1 1 Vf2

. Other definitions for the genetic
distance between populations have been proposed in the liter-
ature (see reference 54 and references therein).

Consider now the genetic divergence experiment. Suppose
that two populations have been isolated, at t 5 0, from the
same parental population, which was at steady state. New pop-
ulations are then allowed to grow quickly to the original size, so
that their composition does not change from the (random)
composition of the parental population (f 5 f0). Our aim is to
monitor how the average relative distance between population,
D, evolves after the moment of split. The expectation value,
D, is given by

D 5 E
0

1

df1E
0

1

df2E
0

1

df0~f1 2 f2!
2 r~f1,tuf0!r~f2,tuf0!rss~f0! (42)

where rss(f0) denotes the steady-state probability density and
r(f,tuf0) is the probability density, which satisfies the initial
condition

r~f,0uf0! 5 d~f 2 f0! (43)

Equation 42 can be also written in the form

D~t! 5 2E
0

1

df0 Vf~tuf0!rss~f0! (44)

where Vf(tuf0) is the variance of f, defined by equations 36 and
37, with A(f) 5 f and under the initial condition of equation 43.
The variance Vf(tuf0) varies from 0 at t 5 0 to its equilibrium
value Vf

ss at t 5 `. Note that equation 44 reduces the relative
distance between two population to the properties of one pop-
ulation.

Consider now a single steady-state population. Random
variation of f in time can be characterized by the time corre-
lation function

K~t! 5
1

Vf
ss @ f~t!f~0! 2 ~f#eq!

2# (45)

The choice of the initial moment t 5 0 in equation 45 is
arbitrary since the system is at steady state. The function K(t)

varies from 1 at t 5 0 to 0 at t 5 `. The characteristic timescale
of the random fluctuations, ttrn (the genetic turnover time) is
defined by K(ttrn) 5 1/e. The correlation function K(t) can also
be expressed in terms of the expectation value f#(tuf0), as given
by

K~t! 5
1

Vf
ss E

0

1

df0@f#~tuf0!f0rss~f0!# 2 ~f#ss!2 (46)

where f#(tuf0) is defined by equation 36 with A(f) 5 f and under
the initial condition given by equation 43.

Steady State

In this section, we derive the general expression for the
probability density in the steady state and discuss in detail the
crossover between stochastic and deterministic behavior in two
cases: in the neutral case (s ,, m) and in the opposite limit
(s .. m).

General case. From equations 1 and 3, which apply at large
population sizes, N m .. 1/ln N, and the condition of steady
state, ]r/]t 5 0, we obtain

q~f! ; 0 (47)

with q(f) given by equation 2. Separating the variables f and p
in the obtained differential equation and integrating both sides,
we get (80)

rss~f! 5 C@f~1 2 f!#2112mNe22Nsf, Nm ..
1

ln~1/m!
(48)

where C is a normalization constant.
As discussed above in the section on boundary conditions, at

small N such that Nm ,, 1/ln N, the probability density has
singular components, equation 4, and obeys equations 5 to 7.
From the steady-state conditions, ]g/]t 5 0 and dp0/dt 5 dp1 5
0, we obtain, again equation 47, with q(f) given by equation 2
with m 5 0, which yields

rss~f! 5 gss~f! 1
1 2 ppol

1 1 e22Ns @d~ f ! 1 e22Ns d~1 2 f !# (49)

gss~f! 5
2mN

1 1 e22Ns

e22Nsf

f~1 2 f!9, f~1 2 f! ..
1
N, Nm ,,

1
ln~1/m! (50)

ppol . 2mN ln [min~N,1/s!] (51)

where ppol . 1 is the total probability of having a polymorphic
population.

At small mN, both forms of probability density (equations 48
and 49), have singularities at f 5 0 and f 5 1, although the
singularities are of different kinds. The two forms happen to
be, to some extent, inter-changeable in the entire interval N ,,
1/m. For example, equations 48 and 49 can be shown to have,
within relative error of ;mN, the same lower momenta of the
density function: the expectation value, variance, etc. The form
of equation 49, although less compact, is generally more con-
venient to use at N ,, 1/m. The form of equation 48, on the
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other hand, applies at mN . 1 as well and is suitable for studies
of transition to the deterministic limit.

Neutral case: s ,,,, m. We start from a simple case, s ,, m,
when mutations can be considered neutral. We will use the
form of equation 48 for the probability density, since we want
to describe both small and large populations. Setting s 5 0 in
equation 48 and normalizing the resulting expression, we get
(80)

rss~f! 5
G~4mN!

G2~2mN!
@f~1 2 f!#2112mN, s ,, m (52)

where G(x) is the Euler gamma function, G(x) 5 *0
` dt tx21e2t,

and we used the identity (1)

E
0

1

df f x21~1 2 f!y21 5
G~x!G~y!

G~x 1 y!
(53)

The change in shape of the probability density with N is shown
in Fig. 4.

The expectation values and variances of mutant frequency, f,
and intrapatient distance, T, which can be obtained from equa-
tion 52 and the definitions in equations 36 to 38 are as follows:

f 5
1
2, Vf 5

1
4~1 1 4mN!

,

T 5
2mN

1 1 4mN, VT 5
2mN

~1 1 4mN!2~3 1 4mN!
, s ,, m (54)

To evaluate the integrals over f in equations 36 and 37, we used
the identities in equation 53 and G(x 1 1) 5 xG(x) (1). For
small populations (mN ,, 1), equations 54 yield well-known
results of the neutral theory:

f 5 1/2, Vf 5 1/4 (55)

T 5 2mN, VT 5 2mN/3, mN ,, 1, sN ,, 1 (56)

As expected, the relative standard deviation of the mutant
frequency, V1/2/f, is on the order of 1 at mN & 1 and small in the
deterministic limit, mN .. 1 (Fig. 6b).

Case with selection: m ,,,, s ,,,, 1. As in the neutral case
considered above, the probability density r(f) shrinks as N
increases. However, selection, accounted for by the factor
exp(-2Nsf) in the right-hand side of equations 48 and 50, causes
asymmetry of r(f). Another important difference is the appear-
ance of an additional asymptotic interval in N (selection-drift
regime in Table 1).

For the smallest populations, N ,, 1/s (drift regime), we
neglect s in equation 48 and arrive at the results obtained
above for the neutral case. In the opposite limit, N .. 1/m (the
selection regime in Table 1), the probability density (equation
48) has a sharp maximum near f 5 m/s. Expanding ln rss near
its maximum, one obtains a Gaussian curve (29)

rss~f! . Ce2
Ns2

m Sf2
m

sD2

, mN .. 1, s .. m (57)

The maximum position, m/s, is the deterministic steady-state

value of the mutant frequency (see below). Expectation values
and variances of f and T (equations 36 to 38) are given by

f 5
m

s , Vf 5
m

2Ns2 , T 5 2
m

s , VT 5
2m

Ns2, mN .. 1, s .. m (58)

In the intermediate selection-drift regime (1/s ,, N ,, 1/m),
the probability density is not narrow, since equations 58 yield
Vf .. f. At the same time, one is not allowed to neglect
selection by putting s 5 0 in equation 48 or equations 49 and
50. In this interval, we will analyze rss(f) using the form given
by equations 49 and 50, which can be shown to give asymptot-
ically correct lower momenta even at 1/ln (1/m) ,, Nm ,, 1.
The function rss(f) has three components, as shown in Fig. 5: a
large peak at f 5 0, a tiny peak at f 5 1, and a continuous
exponential tail at f ; 1/Ns, which describes the density of
polymorphic states. The total probability of polymorhism
(equation 51) is given by a small value, ppol . 2mN ln(1/s). To
obtain momenta for f and T, we substitute equation 49 into
equations 36 and 37 and note that integrals of gss(f) are mostly
contributed by small f ; 1/Ns. As a result, we obtain

f 5
m

s 1 e22Ns, Vf 5
m

2Ns2 1 e22Ns,

T 5
2m

s , VT 5
2m

Ns2, 1/s ,, N ,, 1/m (59)

At N ; 1/s, the above four values match, to an order of
magnitude, the corresponding neutral values in equations 55
and 56. At N ; (1/s) ln(s/m), they asymptotically match equa-
tions 58 derived above in the deterministic limit, N .. 1/m.
Remarkably, in most of the selection-drift interval, (1/s)ln(s/m)
,, N ,, 1/m, the average and variance of f and T, happen to
coincide with their respective deterministic formulas, even
though the relative standard deviations, Vf u f and VT u Tare
large, as they should be, given the shape of r(f) (Fig. 6b).

Deterministic Dynamics and Its Boundaries

As we have shown above, the steady state is asymptotically
deterministic in the limit N .. 1/m. The purpose of this section
is to consider a more general, time-dependent case. We derive
the deterministic evolution equation in two independent ways,
directly from deterministic first-principles, and from the sto-
chastic equation in the limit N3 `; we solve it for an arbitrary
initial condition and thus obtain the boundaries of the deter-
ministic approximation.

Main results and discussion. In the deterministic limit,
N 3 `, the time-dependent probability density is given by

r~f,t! 5 d~f 2 fd~t!! (60)

dfd

dt 5 M~fd! 5 2 sfd~1 2 fd! 2 m~2fd 2 1! (61)

Equation 61 represents the evolution equation for the deter-
ministic frequency fd(t) (Fig. 7). This agrees with the meaning
of M(f), defined by equation 18, as the average change in f per
generation (equation 20). Since the random factor, in this
limit, is absent, the actual change in f naturally coincides with
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the average change. The first term in the right-hand side of
equation 61 describes selection for or against the minority
allele and vanishes in a uniform population, fd 5 0 or 1. The
second term in equation 61, describing mutations, does not
vanish at fd 5 0 or 1 since mutations occur even in a uniform
population. Instead, the term vanishes at fd 5 1/2, when the
effects of forward and reverse mutations (with equal rates)
cancel each other.

The solution of equation 61 in two asymptotic cases, the
neutral case and the opposite case with selection, has the form

f~t! 5 5
1
2

1 ~fo 2
1
2
!e22mt,

fss 1
~fo 2 fss!e2st

1 1 fss 2 fo 1 ~fo 2 fss!e2st

if m ,, s
if m .. s (62)

where, in the second case, fss 5 m/s (23, 24).
In the following subsection, we derive the deterministic

equation 61 from the stochastic equations 1 and 2. Equation 61
can also be obtained directly from deterministic first principles.
The initial set of equations appropriate for the virus popula-
tion model (see “Description of the model and the evolution
equation”) has the form

dn1

dt 5 ~1 2 m!k~1 2 s!n1 1 mkn2 2 vn1 (63)

dn2

dt 5 ~1 2 m!kn2 1 mk~1 2 s!n1 2 vn2 , (64)

where n1 and n2 are the numbers of mutant- and wild-type-
infected cells, respectively, k is the replication constant for the
wild type, and v21 is the average life span of an infected cell.
To match the virus population model where generations of
infected cells change at discrete moments in steps of Dt 5 1, we
choose v 5 1. Using the condition n1 1 n2 5 N 5 const and the
notation f 5 n1/N, equations 63 and 64 are replaced by a single
equation, equation 61.

Note that the condition N 5 const requires that k depends
on f, as given by k 2 1 5 k(sf 2 m), which explains why the
resulting equation 61 is nonlinear. The reason behind this is
that k must depend on some hidden “fast” variable which
adjusts quickly to relatively slow changes in f to keep N con-
stant. An example of such a variable is the number of available
target cells, which may be stable due to a balance between
replenishment and killing by virus. If f(t), for example, in-
creases slowly, the average replication rate will decrease, caus-
ing, due to decreased killing, an increase in the number of
target cells, which will compensate for the initial decrease in
replication rate and keep N constant. There are examples of
biological systems in which such a feedback mechanism is ab-
sent and the condition N 5 const does not apply; we do not
consider them in this work.

At large but finite N, the probability density has a finite
width, w(t), due to random drift, which is calculated in the
subsection below on boundaries of deterministic approxima-
tion. The deterministic approximation remains adequate as
long as the ratio w(t)/fd(t)[1 2 fd(t)] remains much less than 1.
In the neutral limit, m .. s, the deterministic boundary in N is
the same as in the steady state, N .. 1/m. In the presence of
selection, m ,, s, the deterministic boundary depends, in gen-
eral, on the initial condition set in the experiment. We will list

results for the first three experiments in the section on exper-
iments on evolution and observable parameters (see above),
assuming that the initial value of f is known exactly, so that
w(0) 5 0:

w 5 f~1 2 f!

3 5
1/~Nm!1/2,

1/~Nm!
1⁄2,

1
~Ns!

1/2 F 1 2 2f
f~1 2 f! 1 2 ln S1 2 f

f DG1/2

,

accumulation:
f0 5 0, f ,, fss

reversion:
f0 5 1, fss,, f , 1

growth competition:
fo 5 1/2, fss .. f , 1/2

(65)

where f [ fd(t). We observe that in the first two experiments,
when the initial population is monomorphic, the deterministic
criterion is the same as in the steady state, N .. 1/m. For the
growth competition exeperiment, the criterion on N is much
softer, N .. 1/s, as long as f remains larger than its character-
istic value in the steady state, f .. 1/Ns (cf. Fig. 5).

Deterministic dynamics. In the limit of large population
numbers, N 3 `, the term on the right-hand side of equation
2 corresponding to random drift is relatively small. Conse-
quently, the density function must be narrow in f. We start by
rewriting the master equation 1 and 2 in the equivalent form

]r

]t 1 M~f!
]r

]f 5
1

2N
]2

]f2 @f~1 2 f!r# 2 M9~f!r (66)

where M9(f) [ dM/df and M(f) is defined by equation 18. Both
terms on the right-hand side of equation 66 are relatively small:
the first term is proportional to 1/N, and the second term is
much smaller than the second term on the left-hand side since
r(f) changes much more rapidly in f than M(f) does. In the zero
approximation in 1/N, one can substitute 0 for the right-hand
side. The resulting equation has a delta function for its partial
solution, as given by equations 60 and 61. [The general solution
for r(f, t) is any linear combination of different solutions of the
form of equation 60, as determined by the initial condition
r(f,t) [ r0(f). If the initial mutant frequency is set by experi-
ment and/or known exactly, r(f,t) is a single delta function at all
times.] In the following section, we solve equation 66 in the
next approximation in 1/N.

A solution, f(t), of the deterministic equation 61 can be
obtained in a general form. We rewrite equation 61 as

1
s

df
dt 5 ~f 2 fss!~f 2 f*! (67)

fss,*5
1
2 1

m
s 7 F1

4 1 Sm
s D

2G
1
2

(68)

where the minus and plus signs stand for fss and fp, respectively
(here and in the rest of this section, we omit the subscript in fd).
The values of the parameters fss and fp are restricted to the
intervals 0 , fss , 1/2 and fp . 1. fss represents the mutant
frequency in the steady state; fp has no particular meaning. As
one can check, fss matches its asymptotic values of 1/2 and m/s
in the respective limits m ,, s and m ,, s (see “Steady state”
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above). Separating the variables in equation 67 and integrat-
ing, one obtains

f~t! 5 fss 1

~fo 2 fss!~f*2 fss!e2~f
*
2fss!st

f* 2 fo 1 ~fo 2 fss!e2~f
*
2fss!st (69)

where f0 [ f(0). From equation 69, f(`) 5 fss. Note that the
function f(t) is monotonous, so that it never crosses fss. Asymp-
totics of equation 69 in the two cases (the neutral case and the
opposite case with selection) are listed in equations 63 and 64.
The characteristic time it takes to reach steady state is given, in
the two respective limits in equation 62, by 1/m and 1/s. Plots of
f(t) for m ,, s for three particular initial conditions, f0 5 0, 1/2,
and 1, which correspond to accumulation, reversion, and
growth competition experiments (see “Experiments on evolu-
tion and observable parameters” in the qualitative section of
this reviews), are shown schematically in Fig. 8. The approxi-
mate expression for f(t) in the accumulation experiment is
especially simple,

f~t! 5
m

s ~1 2 e2st!, f0 5 0, m ,,s (70)

Boundaries of deterministic approximation. To establish
conditions under which the deterministic description applies,
one has to find the finite width of the probability density at
finite N. For this, we use the perturbation method to solve
equation 66 in the next approximation in 1/N. We will seek a
solution in the automodel form

r~f,t! 5
1

w~t! F Sf 2 fd~t!
w~t! D (71)

where F(u) is some normalized function, *du F(u) 5 1, which
does not depend on time explicitly and whose width in u is on
the order of 1. We assume the width of the probability density
w to be much less than fd. Later, we will obtain the interval of
N in which this assumption actually holds. Since we are inter-
ested in the region of f such that uf 2 fdu ; w, we can replace
M(f) on the left-hand side of equation 66 by its linear expan-
sion in f 2 fd. On the right-hand side, which is already small in
1/N, we retain only the largest terms replacing f(1 2 f) 3
fd(1 2 fd), M(f) 3 M(fd). Substituting equation 71 into equa-
tion 66, we obtain

2 f9~t! 1 M~fd! 5 Fsfd~1 2 fd!

2w G F0~u!

F9~u!

1
1

~Ns!1/2 @w9~t! 2 M9~fd!w#
F~u! 1 uF9~u!

F9~u!
(72)

where fd and w depend on time, t, and primes denote the
derivatives in the corresponding arguments (shown in paren-
theses). We observe that the left-hand side of this expression
and the bracketed terms on the right-hand side depend only on
t while the factors multiplying the brackets are functions only
of u. Since u and t are independent variables, equation 72 can
be satisfied only if the ratio of bracketed terms is a constant
(which we denote l) and the left-hand side is identically zero.
As a result, we arrive at three separate differential equations:
equation 61 for fd(t) and the equation for F(u) and w(t):

lF0 1 uF9 1 F 5 0 (73)

dw
dt 2 M9~fd!w 2

ÎNs3

2l

fd~1 2 fd!

w 5 0 (74)

The constant, l in the above equations can be replaced by 1,
substituting u3 l1/2u and w3 l21/2w, which does not change
the probability density (equation 71). The normalized solution
of equation 73 is a Gaussian:

F~u! 5
1

p1/2 exp F 2
~u 2 C!2

2 G (75)

One can arbitrarily choose C 5 0 since any other choice is
equivalent to a redefinition of fd in equation 71, which does not
change the resulting probability density.

To find w(t), equation 74 can be reduced to two equations
with separating variables, substituting w(t) 5 y(t)f(t), where y
meets the equation

dy
dt 2 M9~fd!y 5 0 (76)

Solving the resulting equation for f(t) and equation 76, we
obtain a general solution of the form:

w~t! 5 eE M9~f!dt FC 1
1
N Edt f~1 2 f!e22 * dt M9~f!G

1
2

(77)

where f [ fd(t). The integrals in t in this expression can be
rewritten as integrals in f by using equation 61. As a result, the
width w can be expressed in terms of the deterministic value
f(t) and of the initial width, w(0), as given by

w 5 w~0! 1
uM~f!u
N1/2 UE

f0

f

df
f~1 2 f!

M3~f! U1/2

(78)

where ~f 2 fss!~fo 2 fss! . 0. (79)

Equation 79 is necessary for convergence of the integral in
equation 78. It reflects the fact that f(t) never crosses its steady-
state level (see the previous subsection).

We now calculate the ratio w/[f(1 2 f)] for a few cases of
interest. The deterministic criterion requires that this ratio be
less than 1. Let us start from the steady state. Since the integral
in equation 78 diverges at f 5 fss, one has to consider the upper
limit of the integral, f, to be close to fss, then expand M(f) .
M9(fss)(f 2 fss), and then evaluate the limit f 3 fss. This yields

wss 5 fss~1 2 fss! 3 H1/~2Nm!1/2, m ,, s

1/~Nm!1/2, m .. s
(80)

where fss is, of course, different in the two cases. The deter-
ministic criterion is met when N .. 1/m (see “steady state”
above). At m .. s, as one can show from equation 78, the same
condition on N applies even far from steady state. At s .. m
and far from steady state, the condition on N depends on both
f0 and f(t) (equation 65).
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Stochastic Dynamics: the Drift Regime

The problems of interest are the decay of a polymorphic
state and gene fixation, transition from a monomorphic state to
the steady state, divergence of separated populations, and the
rate of genetic turnover in the steady state.

Main results and discussion. As in the steady state, selection
can be neglected if N ,, min(1/s, 1/m) (see “Steady state”
above). In most of this interval, mutations enter only in the
boundary conditions and are negligible in the polymorphic
state. Dynamic experiments in this regime exhibit two main
timescales: the shorter scale, at which mutation can be ne-
glected, t ; N, and a much longer scale, associated with mu-
tations, t ; 1/m.

Consider a polymorphic population with an initial value of f
close neither to 0 nor to 1 and focus on the shorter timescale.
As discussed in the qualitative section of this review, f(t) drifts
randomly until the population, at some point, hits a monomor-
phic state (Fig. 9b). In terms of the probability density, g(f,t)
(equation 4) spreads from the point f 5 f0 onto the whole
interval of f and then decays, as a whole, in time (Fig. 9a) as
given by the following equations (32, 78):

g~f,t! 5 S N
2pfo~1 2 fo!t

D1/2

exp F2
N~f 2 f0!

2

2f0~1 2 f0!t
G, 1 ,, t ,, N

(81)

g~f,t! ; 6f0~1 2 f0!e2
t
N, t .. N (82)

Note the relation between distance and time following from
equation 81, f 2 f0 ; (tN), the same as in a gas diffusion
process. At t .. N, the probability is being “absorbed” by two
monomorphic states, as gas is “absorbed” by two very cold
walls. If, however, the initial polymorphism is very small (f0 ,,
1), the manner of spread of g(f) differs from the classical
diffusion law:

g~f,t! 5 A f0

2N
t2 e2

2Nf
t , Î~f0N ,, t ,, N (83)

where A ; 1.
Choosing f0 5 1/N and using equation 83, one can estimate

the probability that a single mutant introduced into a popula-
tion will ever grow to frequency f before becoming extinct and
the average time of such successful growth, as given by

G~f! ,
1

Nf , tG~f! , Nf (84)

respectively. We have G(1/N) ; 1, since a single allele was
present to start with. The gene fixation probability is G(1) ;
1/N, with the corresponding time tG(f) ; N (34).

Transition from a monomorphic (e.g., f 5 0) to steady state
occurs in two stages, as shown in Fig. 10a. At the first stage, t ;
N, a thin tail of the density g(f,t) spreads into the interval 0 ,
f , 1 while the probability p0 remains close to 1. (This means
that some rare populations acquire an admixture of mutants.)
At the second stage, t ; 1/m, the probability p0(t) drops slowly,
and p1(t) slowly increases, both approaching 1/2:

g~f,t! 5
2mN

f e2
2Nf

t , t ,, N (85)

g~f,t! 5
mN

f~1 2 f! @1 1 ~1 2 2f!e22mt#, t .. N (86)

p0,1 5
1 6 e22mt

2 1 O~mN! (87)

The expectation value and variance of f, given by

f#~t! . p1 5
1
2 ~1 2 e22mt! (88)

Vf ~t! 5
1
4 ~1 2 e24mt! (89)

saturate, as they should, at the steady-state values (equation
55). Note that the time dependence of f#(t) (equation 88) is the
same as in the deterministic limit (equation 62). It also note-
worthy that the average intrapatient distance T, and its vari-
ance VT as found from equation 86, do not depend on t at t ..
N. They approach their steady-state values (equation 56) much
earlier than the two monomorphic states become equally prob-
able.

The two timescales in accumulation and steady state can also
be obtained from the results for the gene fixation experiment
(equation 84). A mutant genome appears in the population
with the small probability mN per generation. It gets fixed with
the probability G(1) ; 1/N. Hence, an average time between
the switch from pure wild type to pure mutant and back is on
the order of N/(mN) 5 1/m. The time taken by a separate switch
is much shorter and is the same as the fixation time, tG(1) ; N
(equation 84) (compare the simulation in Fig. 10a).

The longer timescale, 1/m, also appears in the divergence of
separated populations and the genetic turnover experiments
(see “Experiments on evolution and observable parameters” in
the qualitative section of this review. After two populations are
isolated, at t 5 0, from the same population, the relative ge-
netic distance between them (equation 44) has a form

D~t! 5
1
2 ~1 2 e24mt! (90)

The time correlation function for a steady state of a single
population decays with time, as given by

K~t! 5 e22mt (91)

Decay of the polymorphic state and gene fixation. At the
smallest N ,, 1/m and 1/s, we use the formalism in equations
4 to 7. Neglecting selection, equation 7 becomes

]g
]t 5

1
2N

]2

]f2 @f~1 2 f!g# (92)

which has to be solved together with boundary conditions
(equations 5 and 6) and specific initial conditions, p0(0), p1(0),
and g(f, 0).

In this subsection, we consider an initial polymorphic pop-
ulation with a known mutant frequency

p0~0! 5 p1~0! 5 0, g~f,0! 5 d~f 2 f0! (93)

where f0 Þ 0 or 1. As shown in the next subsection, mutations
(which enter the problem via equation 6) become important at
much longer timescales than those involved in random drift.
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Hence, we can set m 5 0 in equation 6 implying that g(f,t) does
not diverge at the boundaries [or diverges more slowly than 1/f
and 1/(1 2 f)]. The general solution of equation 92, g(f,t), can
be written as a sum over its eigenfunctions hi(f) (32):

g~f,t! 5 O
i50

`

ai hi~f!e2
li t
N (94)

]2

]f2 @f~1 2 f!hi# 5 2 2li hi~f! (95)

ai 5 E
0

1

df f~1 2 f!hi~f!g~f,0! (96)

Equation 95 is equivalent to the hypergeometric equation. The
eigenvalues li corresponding to nondivergent solutions of
equation 95 and the eigenfunctions hi(f) are given by (1)

li 5 1 1
i~i 1 3!

2 , i 5 0, 1, 2 . . .

hi~f! 5 2 F 2i 1 3
~i 1 1!~i 1 2!G

1/2

Ci
~3/3!~1 2 2f ! (97)

where Ci
(3/2)(x) are Gegenbauer polynomials (1). The set of

functions {hi} is orthogonal and normalized, as given by *0
1df

f(1 2 f)hi(f)hj(f) 5 dij. Below, we evaluate g(f, 0) in asymptotic
limits in time, for two cases: strong and weak initial polymor-
phism.

(i) Decay of strong polymorphism. Suppose that the initial
population is strongly polymorphic, f0 ; 1 2 f0 ; 1 in equation
93. For an initial period, the density g(f,t) is localized in a small
region of f near f 5 f0. The factor f(1 2 f) in equation 92 can
be then approximated by a constant. It is easier to solve the
resulting simplified equation directly rather than using the
general solution in equation 94. Since the density is localized
far from the boundaries, it is expected to have an automodel
form. Substuting g(f,t) 5 A(t)F[B(t)(f 2 f0)] into the approxi-
mate equation 92, one arrives at equation 81. The solution
applies while t ,, N, when the density peak remains narrow.

In the opposite limit, t .. N, the sum in equation 94 can be
approximated, with an exponentially small error, by its lowest
term with i 5 0. Finding l0 and h0(f) from equations 97 and a0

from equations 93 and 96, we arrive at equation 82 (32, 78).
(ii) Gene fixation. We consider now a weak initial polymor-

phism, f0 ,, 1 in equation 93. For example, f0 5 1/N corre-
sponds to a single new genome introduced into a monomor-
phic population. We estimate the probability, G(f), of having
the new subpopulation grow to frequency f before it becomes
extinct and the average time of such growth, tG(f), if this event
happens. This problem has received much attention in the
literature (19, 24, 34, 38, 78). A treatment based on the back-
ward Kolmogorov equation (34) treats the final mutant fre-
quency, f, as a constant and the initial mutant frequency, f(0),
as a variable. We present here a semiquantitative derivation
based on the forward Kolmogorov equation. In any approach,
since the range of values f ; 1/N is involved, one can estimate
G only up to a numerical constant depending on the finer
details of a population model (a fact not emphasized in refer-
ence 34).

At large t .. N, the probability density, g(f,t), still decays as
given by equation 82. However, most of the decay occurs much
earlier. At t such that 1 ,, t ,, N, the density g(f,t) is localized
at f ,, 1. Unlike in the case of strong initial polymorphism,
only the factor 1 2 f in equation 92 can be replaced by a
constant, 1: the factor f has to be preserved as a variable. The
new automodel solution for equation 92 has the form of equa-
tion 83. Using equation 83, for the total probability of poly-
morphism we obtain.

ppol~t! 5 E
0

`

df g~f,t! 5
A
t (98)

This means that the subpopulation started by a new allele at
t ; 1 will most probably become extinct after a few genera-
tions. The normalization coefficient A is estimated from the
condition ppol(t) 5 1 at t ; 1, which yields A ; 1. This is an
estimate since the continuous approach ceases to apply at t ;
1 and f ; 1/N. The probability G(f,t) that the frequency of new
allele will exceed f at time t is given by

G~f,t! 5 E
f

`

df9 g~f9,t! ,
1
t e2

2Nf
t (99)

As a function of time, the probability G(f,t) has its maximum at
t 5 2Nf. The height and position of this maximum yield the
desired estimates for the probability of growth G(f) and the
average time of growth tG(f) (equations 84).

Transition from a monomorphic to a steady state. We con-
sider now the accumulation and reversion experiment (see
“Steady state” above). Since the two alleles are symmetric
when s 5 0, it suffices to consider only one of these experi-
ments. Let the population consist initially of the wild type only.
This corresponds to initial conditions

p0~0! 5 1, p1~0! 5 0, g~f,0! ; 0 (100)

in equation 92.
At short times t, g(f, t) is localized near the left boundary, f

,, 1, and, as verified below, we have p0 . 1, p1 . 0. Using
these facts, equations 6 and 92 can be simplified:

]g
]t 5

1
2N

]2

]f2 ~fg!, @fg#f30 5 2mN (101)

At the initial conditions given by equation 100, equation 101
has an automodel solution, equation 85. At t ; N, the proba-
bility density spreads over the whole interval of f. The total
change in p0 can be estimated by integrating the first of equa-
tions 5 over the interval between t ; 1 and t ; N, which yields
1 2 p0 ; mN ln N ,, 1. This confirms our initial guess that p0

remains close to 1 in this interval of time. The average mutant
frequency, f, and polymorphism, T (equations 36 and 38), are
given by f#(t) . mt, T# (t) . 2mt.

At long times, t .. N, the probability p0 is slowly decaying
and p1 is slowly increasing. Since the characteristic diffusion
times of g(f,t) are as short as t ; N (above), the density g(f,t) is
at local equilibrium at any moment of time, statically following
the slow changes in p0(t) and p1(t). Hence, we can put ]g/]t 5
0 in equation 92 which yields f(1 2 f) g(f,t) 5 C1(t) 1 C2(t)f.
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Finding parameters C1(t) and C2(t) from equations 5 and 6, we
arrive at equations 86 and 87 for g(f) and p0,1.

Divergence of separated populations and the time correla-
tion function. Suppose that a steady-state system is split in two
populations at t 5 0, which grow quickly to the initial size. The
average relative distance between the two populations, D# ,
(equation 44) is expressed via the conditional variance Vf(tuf0)
for arbitrary value of f0. In the drift regime, the task of finding
D# is greatly simplified because the system is almost always
either purely mutant or purely wild type, so that

rss~f0! <
1
2 @d~f0! 1 d~1 2 f0!# (102)

is a good approximation for rss(f0). (Note that this approxima-
tion cannot be used to calculate the average polymorphism T# :
it would yield T# 5 0. For f# and Vf, however, the accuracy is
sufficient.) Hence, we need to know the variance Vf(tuf0) at only
two initial values, f0 5 0 and f0 5 1. The value of Vf(tu0), was
already obtained, equation 89, and from symmetry between the
two alleles, we have Vf(tu1) [ Vf(tu0). Using equations 44 and
102, we arrive at equation 90.

The time correlation function, K(t), characterizing the speed
of genetic turnover in a single steady-state population can be
expressed in terms of the conditional expectation value f#(tuf0),
as given by equation 46. Evaluation of K(t) is similar to eval-
uation of the relative distance. The value of f0 which mostly
contributes to the right-hand side of equation 46 is f0 5 1. We
have f#(tu1) 5 1 2 f#(tu0) from symmetry, where f#(tu0) is already
known from equation 88. Substituting Vf

ss 5 1/4 from equation
55, we obtain equation 91.

Stochastic Dynamics: the Selection-Drift Regime

Main results and discussion. In this section, we consider the
interval of N, i.e., 1/s ,, N ,, 1/m. The accumulation exper-
iment consists of sprouting a weak probability density tail into
the interval 0 , f , 1 from the main peak, d(f) (Fig. 5). The
relevant scales for f and t are easy to estimate from the results
on gene fixation (equation 84). Consider a typical stochastic
process f(t), like one shown in Fig. 11. A single genome ap-
pears and grows, drifting randomly, to a frequency f ; 1/Ns
(Fig. 5). Further growth is efficiently prohibited by selection.
The timescale of growth is tG(1/Ns) 5 1/s (equation 84). Fur-
thermore, mutant alleles are generated in the population with
frequency mN. The probability of successful growth to f ; 1/Ns
is G(fs) ; s ,, 1 (equation 84). The probability of having a
polymorphic state is ;mN (see “Steady state” above). Hence,
the average time interval between such events (i.e., between
high peaks in Fig. 11) is 1/mNs. The exact expressions for the
average frequency, f#, and its variance, Vf, are

f#~tu0! 5
m

s ~1 2 e2st! (103)

Vf~tu0! 5
m

2Ns2 ~1 2 e2st!2 (104)

At t 3 `, the two parameters cross over to the steady-state
values obtained in equation 59. The average intrapatient dis-
tance and its variance are given by T# . 2f and VT . 4Vf.

Note that the expectation value of the frequency f#(tu0) in

equation 103 coincides with the deterministic value in equation
70, although fluctuations of f are very large. The same curious
result can be demonstrated for any population model in which
the function M(f) in Fokker-Planck equation 22 is linear in f. In
the virus population model, as in many other models, the
linearity condition is met asymptotically in a nearly momomor-
phous state, f ,, 1 or 1 2 f ,, 1, which is the case in the
accumulation experiment. One can imagine systems, such as
diploid populations with a very strong allelic dominance (34,
38), in which M(f) is not linear even at f3 0 and f#(t) does not
equal the deterministic value at small N.

The relative genetic distance between two populations split
from one at t 5 0 and the time correlation function (see below)
are given by

D# ~t! . 2Vf~tu0! 5
m

Ns2 ~1 2 e2st!2 (105)

K~t! 5 e2st (106)

respectively. Note that the timescale, 1/s, is much shorter than
the timescale in the adjacent drift regime, 1/m (see “Stochastic
dynamics: the drift regime” above). Crossover between these
two values occurs smoothly in the interval 1/s ,, N ,, (1/s)
ln (s/m) (see “Steady state” above), as controlled by the second
peak of the probability density at f 5 1 (Fig. 5), which is
exponentially small at N .. (1/s) ln (s/m).

The reversion experiment (see below) exhibits a transition
from the uniform mutant, f0 5 1, to an almost wild-type pop-
ulation, f ; 1/Ns ,, 1. The evolution of the probability density
r(f,t) occurs in two stages and involves two different timescales,
t ; 1/s and t ; 1/mNs (i.e., the same two scales as in the
accumulation experiment). The first, short time is that in which
a rare population becomes polymorphic. In terms of the prob-
ability density, this corresponds to a thin tail of r(f,t) spreading
into the interval 0 , f , 1. The second, longer time is that on
which a typical population switches to the wild type, i.e., the
probability of the purely mutant state, p1(t), decays. At the
second stage, different components of the probability density
evolve, as shown in Fig. 12 and given by

p1~t! 5 e2~2mN s!t, p0~t! . 1 2 p1~t!, t ..1/s (107)

g~f,t! 5
2mN

f~1 2 f! @p1~t! 1 ~1 2 2p1~t!!e22Nsf# (108)

with a small relative error of ; mN (Fig. 14). The expectation
values and variances of parameters f,T are given by

f#~t! 5 p1~t!

Vf~t! 5 p1~t!@1 2 p1~t!# (109)

T# ~t! 5 4mNp1~t!, t .. 1/s,

where p1(t) is given by equation 107. Note that equations 109
have a small relative error. As a result, the three parameters do
not vanish at t 3 `, as would follow from equations 109, but
cross over to small steady state values given by equations 59
(Fig. 5). Note also that although the initial state is a pure
mutant, we have a finite genetic distance, T# (0), in equations
109. This is because the average polymorphism, T# (t), is already
saturated at t ; 1/s.
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The most important result is that the average waiting-for-
reversion time, 1/mNs (51), is longer than in the deterministic
regime (Fig. 13). Dependence of the reversion time on N in all
three intervals of N is shown schematically in Fig. 16.

Accumulation. For the sake of simplicity, we consider an
interval in N, somewhat narrower in the log sense than the
selection-drift interval: (1/s) ln (s/m) ,, N ,, 1/[m ln (1/s].
Then we can (i) use the more convenient formalism in equa-
tions 4 to 7 and (ii) neglect the second density peak at f 5 1
(Fig. 5), not considering crossover to the drift regime in the
interval 1/s ,, N ,, (1/s) ln(s/m) (see “Steady state” above).

We seek the probability density in the form

ptot~f,t! 5 p0~t!d~f! 1 g~f,t! (110)

where the initial state is g(f,0) [ 0 and p0(t) 5 1. The density
g(f,t) remains localized at small f and crosses over with time to
the steady-state density, g(f,`) 5 (2mN/f)e22Nsf (equation 50).
This process is described by the dynamic equation and the
boundary condition

]g
]t 5

1
2N

]2

]f2 ~fg! 1 s
]

]f ~fg!, (111)

~fg!f30 5 2mN (112)

which follow from equations 6 and 7 at f ,, 1 and p0 . 1.
At short times, t ,, 1/s, we have f ,, 1/(Ns), and the

selection term in equation 111 is negligible. Hence, we can use
g(f,t) for the drift regime (equation 85). In principle, one could
also solve equation 111 at any t, using an expansion over
eigenfunctions which are related to the Laguerre polynomials
(1). The lower momenta of r, however, can be more easily
obtained without finding r(f) explicitly. Multiplying both sides
of equation 111 first by f and second by f2 and integrating both
sides over f, we get

df
dt 5 m 2 sf (113)

df2

dt 5
f
N 2 2sf2 (114)

(The right-hand side of equation 111 was integrated by parts,
and we used the boundary condition, equation 112.) Solving
first equation 113 and then equation 114 and using the initial
conditions f(0) 5 Vf(0) 5 0, we arrive at equations 103 and 104
for the expectation value, f(t), and variance, Vf(0) . f 2.

Divergence of separated populations and the time correla-
tion function. The time dependence of the average relative
distance, D# (t), between two populations isolated at t 5 0 from
a single population is given by general equation 44, in which
Vf(tuf0) is defined by equations 36 and 37 with A(f) [ f and the
initial condition r(f,0) 5 d(f 2 f0). As is clear from the struc-
ture of the density function (equation 110), the main contri-
bution to the integral in f0 (equation 44) comes from f0 5 0.
Hence, using equation 104, we obtain equation 105.

The time correlation function, K(t), as follows from equation
46, is contributed only from the polymorphic initial states, f0 Þ 0
or 1. Substituting equations 50 and 103 and the variance, Vf

ss, from
equation 59 into equation 46, we arrive at equation 106.

Reversion (fixation of advantageous variant). We start from
equations 4 to 7 and the initial conditions g(f, 0) [ 0, p0(0) 5 0,
and p1(0) 5 1. We consider only the second, most interesting

stage of evolution. On this timescale, t ; 1/(mNs), the probability
p1(t) decays from 1 to almost 0 and p0(t) increases from 0 to
almost 1. As we did with the drift regime (see above), we use the
fact that the equilibration of a polymorphic state, f ; 1, does not
involve the mutation rate and is relatively fast. Therefore, g(f,t)
follows quasistatically the change in p0(t) and p1(t). Setting
]g/]t 5 0 in equation 7 and solving the resulting equation, we get

q~f,t! ; q~t!

g~f,t! 5
1

f~1 2 f! F 2
q~t!

s 1 A~t!e22NsfG (115)

where the coefficients q(t) and A(t) change slowly in time.
Substituting equation 115 into the boundary conditions given
by equations 5 and 6 and solving the resulting system of equa-
tions with respect to q(t), A(t), p0(t), and p1(t), we arrive at
equations 107 and 108 and curves shown in Fig. 14.

Sampling Effects

Main results. Suppose that to obtain an experimental esti-
mate for the intrapatient genetic distance in a population, T*,
we isolate k sequences from the population, determine the
number of nucleotide differences for each pair of sequences,
and average the result over all such pairs. The difference be-
tween T* and the actual value, T, is characterized by the stan-
dard relative error of such a measurement, ε

ε2 5
2

kT 2
2~2k 2 3!

k~k 2 1!
(116)

Equation 116 is quite general and applies to any regime or any
particular experiment on genetic evolution. The value T varies
randomly between populations. It is useful to know in equation
116 the representative value of T in a polymorphic population:

Trep 5
1

ppol
E

0

1

df 2f~1 2 f!g~f! (117)

where ppol 5 *1/N
1 2 1/N df g(f) is the total probability of poly-

morphism. Trep differs from the standard average T# by being
averaged over polymorphic states only. For instance, in the
steady state, using equations 50 and 57, we get

Trep 5 H1/ln N drift regime
1/@Ns ln~1/s!# selection-drift regime
2m/s selection regime

(118)

The sample size required to reach accuracy ε can be obtained
by substituting these values into equation 116 (Fig. 15).

Derivations. Consider a sample of k genomes randomly se-
lected from a population with the mutant frequency f. An
experimental estimate for f, which we denote f*, is the propor-
tion of genomes in the sample that are mutant

f* 5
1
k O

i51

k

vi (119)

where the index i numbers the genomes in the sample and the
integer number vi assumes one of two values: vi 5 1 if the ith
genome is mutant and vi 5 0 if it is wild type. The probability
P(v) of a particular allele is given by
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P~1! 5 f, P~0! 5 1 2 f (120)

with the expectation value ,vi. 5 f. (We will use angle brack-
ets to denote the average over samples, reserving the overline
for the average over populations.) The expectation value,
,f*., as follows from equations 119 and 120, is equal to f,
which confirms that f* is a correct estimate of f. The sampling
variance of the estimate, Uf, is given by

Uf ; , ~f* 2 f!2 . 5
1
k2 O

i51

k O
j51

k

^~vi 2 f!~vj 2 f!& (121)

Since vi and vj at i Þ j are independent random numbers, any
term in equation 121 with i Þ j reduces to a product of two
averages and vanishes. Any term in equation 121 with i 5 j, as
one can obtain from equation 120, is equal to f(1 2 f), which
yields

Uf 5 f~1 2 f!/k (122)

The estimate for the frequency of polymorphic pairs, T 5
2f(1 2 f), could be calculated, in principle, from the estimate of
the mutant frequency, f*. However, it is usually more conve-
nient to measure T directly as a fraction of polymorphic pairs
among all possible pairs of genomes from the sample. Analo-
gously to f*, the estimate T* can be written in terms of num-
bers vi

T* 5
2

k~k 2 1! O
i,j

@vi~1 2 vj! 1 ~1 2 vi!vj# (123)

where k(k 2 1)/2 is the total of all possible pairs. Each poly-
morphic pair, (vi, vj) 5 (0,1) or (1,0), contributes 1 to the sum.
The expectation value of T* is ,T* 5 2f(1 2 f) 5 T. The
sampling variance, UT, can be obtained from equation 123 by
the same method we used to obtain equation 122:

UT 5 ^~T* 2 T!2& 5
2T
k S1 2 T

2k 2 3
k 2 1 D (124)

Since T cannot be larger than 1/2, we have UT . 0 at any k. The
criterion of a sufficiently large sample is that the relative error
of measurement, ε 5 UT/T, is small. From equation 124, we
arrive at equation 116 for ε.
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